![基于深度卷積神經(jīng)網(wǎng)絡的地鐵行人檢測算法關鍵技術研究_第1頁](http://file4.renrendoc.com/view/045110f4b768ff3b38babb9fd9acb146/045110f4b768ff3b38babb9fd9acb1461.gif)
![基于深度卷積神經(jīng)網(wǎng)絡的地鐵行人檢測算法關鍵技術研究_第2頁](http://file4.renrendoc.com/view/045110f4b768ff3b38babb9fd9acb146/045110f4b768ff3b38babb9fd9acb1462.gif)
![基于深度卷積神經(jīng)網(wǎng)絡的地鐵行人檢測算法關鍵技術研究_第3頁](http://file4.renrendoc.com/view/045110f4b768ff3b38babb9fd9acb146/045110f4b768ff3b38babb9fd9acb1463.gif)
![基于深度卷積神經(jīng)網(wǎng)絡的地鐵行人檢測算法關鍵技術研究_第4頁](http://file4.renrendoc.com/view/045110f4b768ff3b38babb9fd9acb146/045110f4b768ff3b38babb9fd9acb1464.gif)
![基于深度卷積神經(jīng)網(wǎng)絡的地鐵行人檢測算法關鍵技術研究_第5頁](http://file4.renrendoc.com/view/045110f4b768ff3b38babb9fd9acb146/045110f4b768ff3b38babb9fd9acb1465.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
基于深度卷積神經(jīng)網(wǎng)絡的地鐵行人檢測算法關鍵技術研究摘要
隨著城市化進程的不斷加速,地鐵成為了現(xiàn)代城市中最為重要的公共交通工具之一,人口密度也不斷的增加。為了提高地鐵行人的安全性和系統(tǒng)的智能化程度,本文提出了一種基于深度卷積神經(jīng)網(wǎng)絡的地鐵行人檢測算法。首先,本文通過對目標檢測方法的研究,將FasterR-CNN應用于地鐵行人檢測。然后本文針對在地鐵場景下行人檢測中所存在的問題,如人群密集、光線條件不穩(wěn)定等,提出了一系列關鍵技術,包括RetinaNet的改進和用于光照不均和強烈陰影區(qū)域的自適應閾值選擇等。最后,使用KSTSubwayPedestrian數(shù)據(jù)集對所提出的算法進行了評估,并分別與基于YOLO、SSD和FasterR-CNN等方法進行了比較。實驗結(jié)果表明,本文所提出的方法具有較高的檢測精度和實時性能,在地鐵行人檢測領域具有一定的推廣價值和應用前景。
關鍵詞:地鐵行人檢測,深度卷積神經(jīng)網(wǎng)絡,F(xiàn)asterR-CNN,RetinaNet,自適應閾值選擇。
ABSTRACT
Withtheaccelerationofurbanizationprocess,subwayhasbecomeoneofthemostimportantpublictransportationtoolsinmoderncities,andthepopulationdensityisalsoincreasing.Inordertoimprovethesafetyofsubwaypedestriansandtheintelligenceofthesystem,thispaperproposesasubwaypedestriandetectionalgorithmbasedondeepconvolutionalneuralnetwork.Firstly,basedonthestudyofobjectdetectionmethods,FasterR-CNNisappliedtosubwaypedestriandetection.Then,inviewoftheproblemsexistinginpedestriandetectioninsubwayscenarios,suchascrowddensityandunstablelightingconditions,aseriesofkeytechnologiesareproposed,includingtheimprovementofRetinaNetandtheadaptivethresholdselectionmethodusedforunevenilluminationandstrongshadowareas.Finally,theproposedalgorithmisevaluatedusingKSTSubwayPedestriandatasetandcomparedwithmethodsbasedonYOLO,SSDandFasterR-CNN,respectively.Theexperimentalresultsshowthattheproposedmethodhashighdetectionaccuracyandreal-timeperformance,andhascertainpromotionvalueandapplicationprospectsinsubwaypedestriandetectionfield.
Keywords:Subwaypedestriandetection;deepconvolutionalneuralnetwork;FasterR-CNN;RetinaNet;adaptivethresholdselectionSubwaypedestriandetectionisacriticaltaskinthefieldoftransportationsafety.Inrecentyears,deeplearning-basedmethodshaveachievedremarkableprogressinpedestriandetection.However,existingapproachesstillfacechallengessuchaslowdetectionaccuracy,highcomputationalcomplexity,andslowreal-timeperformance.
Toaddresstheseproblems,thispaperproposesanadaptivethresholdselectionstrategytoimprovethedetectionaccuracyofRetinaNet,astate-of-the-artdeepconvolutionalneuralnetwork.Theproposedmethoddynamicallyadjuststhethresholdaccordingtotheinputimage,whicheffectivelyimprovesthedetectionaccuracyofsmallobjectsandreducesfalse-positivedetections.
Toevaluatetheperformanceoftheproposedalgorithm,experimentsareconductedontheKSTSubwayPedestriandataset,andtheresultsarecomparedwithmethodsbasedonYOLO,SSD,andFasterR-CNN.Theexperimentalresultsdemonstratethattheproposedmethodachieveshighdetectionaccuracywhilemaintainingreal-timeperformance.Moreover,theproposedmethodoutperformsexistingstate-of-the-artmethodsintermsofbothdetectionaccuracyandreal-timeperformance.
Inconclusion,theproposedalgorithmisapromisingapproachforsubwaypedestriandetection.TheadaptivethresholdselectionstrategycaneffectivelyimprovethedetectionaccuracyofRetinaNet,makingitsuitableforreal-timedetectionapplications.FutureworkcouldfocusonexpandingthedatasetandfurtheroptimizingtheproposedalgorithmtoachieveevenbetterperformanceInadditiontofurtheroptimizationoftheproposedalgorithm,futureworkcouldalsofocusonaddressingsomeofthelimitationsandchallengesthatariseinsubwaypedestriandetection.Oneofthemainchallengesisthepresenceofocclusions,whichoccurwhenpedestriansarepartiallyorfullyhiddenbyotherobjectssuchaspillarsorboxesinthesubwaystation.Thiscanleadtofalsenegativesorinaccuratedetectionresults.Toaddressthisissue,researcherscouldexploretheuseofmulti-viewcamerasandsensorfusiontechniquestocombineinformationfrommultiplesourcesandimprovetheaccuracyofdetection.
Anotherchallengeisthevariabilityinlightingconditions,whichcanaffectthequalityofimagesandmakeitdifficulttodetectpedestrians.Onepossiblesolutionistouseinfraredcamerasorothersensorsthatarelesssensitivetolightingconditions.Additionally,researcherscouldinvestigatetheuseofdeeplearningmodelsthatarelesssensitivetolightingvariations,suchasthosethatincorporateattentionmechanismsoradversarialtrainingtechniques.
Furthermore,assubwaysystemsbecomemoreubiquitousincitiesaroundtheworld,researcherscouldfocusonoptimizingtheproposedalgorithmfordifferenttypesofsubwaystationsandsettings,suchasthosewithhighpassengervolumesorthosethatoperateindifferentweatherconditions.Thiscouldinvolvecollectingmorediversedatasetsfromarangeofsubwaysystemsandenvironments,andtrainingthealgorithmonthesedatasetstoimproveitsrobustnessandgeneralizationability.
Inconclusion,whiletheproposedalgorithmshowspromisingresultsforsubwaypedestriandetection,therearestillmanychallengesandlimitationsthatneedtobeaddressedinordertoimproveitsoverallperformanceandscalability.Bycontinuingtoexplorenewtechniquesandapproaches,researcherscanhelptoadvancethefieldofcomputervisioninthecontextofsubwaytransportation,andcontributetothedevelopmentofsaferandmoreefficientsubwaysystemsOnelimitationoftheproposedalgorithmisitsrelianceoncolorinformationforpedestriandetection.Thiscanposechallengesinsituationswherelightingconditionsorclothingcolorsmayvarywidelyamongpedestrians.Toaddressthis,futureresearchshouldexploretheintegrationofothermodalities,suchasdepthorthermalimaging,toimprovedetectionaccuracy.
Anotherchallengeistheneedforreal-timeperformanceinasubwayenvironment,wherefast-movingpedestriansandtrainsrequirequickandaccuratedetection.Thishighlightstheimportanceofoptimizingthealgorithmforspeedandefficiency,suchasthroughtheuseofparallelprocessingorhardwareacceleration.
Finally,thealgorithmwasevaluatedprimarilyondatasetscontainingpedestrianswalkinginastraightline,whichmaynotfullyrepresentthediversityofpedestrianmovementinasubwaysetting.Futureworkshouldevaluatethealgorithmonmorediversedatasets,includingscenariossuchascrowdedplatformsandstaircases.
Overall,whilethereisstillworktobedonetoimprovetheperformancea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年債權(quán)出售及受協(xié)議書范文參考
- 2025年國內(nèi)旅游合作合同標準格式
- 2025年企業(yè)與股東資金互助協(xié)議
- 2025年保險賠付責任權(quán)益協(xié)議
- 2025年官方版復婚雙方解除婚姻策劃協(xié)議書
- 2025年人力資源與組織績效評估合同
- 2025年度人工智能策劃投資協(xié)議書
- 2025年古建筑保護工程進度申請監(jiān)管協(xié)議
- 2025年二手房產(chǎn)一次性付款交易合同模板
- 2025年債券交易委托策劃協(xié)議書
- 中小學校崗位安全工作指南
- 數(shù)據(jù)中心運維方案
- 《愿望的實現(xiàn)》全文
- 病毒性腦炎教學查房及疑難病例討論
- Word操作練習題(解析和答案)
- 糖尿病足的多學科聯(lián)合治療
- 小龍蝦啤酒音樂節(jié)活動策劃方案課件
- 中藥貼敷課件
- 塔吊租賃(大型機械)-招標文件模板(完整版)2021.5.13
- 客戶服務中心操作手冊
- 《戰(zhàn)國策》教學講解課件
評論
0/150
提交評論