




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
本文格式為Word版,下載可任意編輯——EViews計(jì)量經(jīng)濟(jì)學(xué)試驗(yàn)報(bào)告
試驗(yàn)題目多重共線性的診斷與修正
一、試驗(yàn)?zāi)康呐c要求:
要求目的:1、對(duì)多元線性回歸模型的多重共線性的診斷;
2、對(duì)多元線性回歸模型的多重共線性的修正。
二、試驗(yàn)內(nèi)容
根據(jù)書上第四章引子“農(nóng)業(yè)的發(fā)展反而會(huì)減少財(cái)政收入〞,1978-2023年的財(cái)政收入,農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加值等數(shù)據(jù),運(yùn)用EV軟件,做回歸分析,判斷是否存在多重共線性,以及修正。
三、試驗(yàn)過(guò)程:(實(shí)踐過(guò)程、實(shí)踐所有參數(shù)與指標(biāo)、理論依據(jù)說(shuō)明等)
(一)模型設(shè)定及其估計(jì)
經(jīng)分析,影響財(cái)政收入的主要因素,除了農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加值以外,還可能與總?cè)丝诘纫蛩赜嘘P(guān)。研究“農(nóng)業(yè)的發(fā)展反而會(huì)減少財(cái)政收入〞這個(gè)問(wèn)題。
設(shè)定如下形式的計(jì)量經(jīng)濟(jì)模型:Yi=1+2X2+3X3+4X4+5X5+6X6+7X7+i
其中,Yi為財(cái)政收入CS/億元;X2為農(nóng)業(yè)增加值NZ/億元;X3為工業(yè)增加值GZ/億元;X4為建筑業(yè)增加值JZZ/億元;
X5為總?cè)丝赥POP/萬(wàn)人;X6為最終消費(fèi)CUM/億元;X7為受災(zāi)面積SZM/千公頃。
圖1:1978~2023年財(cái)政收入及其影響因素?cái)?shù)據(jù)
年份
197819791980198119821983198419851986198719881989199019911992199319941995
建筑業(yè)
農(nóng)業(yè)增工業(yè)增加總?cè)丝?/p>
財(cái)政收入增加值
加值值GZ/億TPOP/萬(wàn)
CS/億元JZZ/億
NZ/億元元人
元
1132.31027.51607138.2962591146.41270.21769.7143.8975421159.91371.61996.5195.5987051175.81559.52048.4207.11000721212.31777.42162.3220.710165413671978.42375.6270.61030081642.92316.12789316.71043572023.82564.43448.7417.910585121222788.73967525.71075072199.432334585.8665.81093002357.23865.45777.28101110262664.94265.964847941127042937.150626858859.41143333149.485342.28087.11015.11158233483.375866.610284.514151171714348.956963.8141882266.51185175218.19572.719480.72964.71198506242.212135.824950.63728.8121121
受災(zāi)面
最終消費(fèi)
積SZM/
CUM/億元
千公頃2239.12633.73007.93361.53714.84126.44846.35986.36821.87804.69839.511164.212090.514091.917203.321899.929242.236748.2
507903937044526397903313034710318904436547140420905087046991384745547251333488295504345821
1996199719981999200020232023202320232023202320237407.998651.149875.9511444.0813395.2316386.0418903.6421715.2526396.4731649.2938760.251321.7814015.414441.914817.61477014944.715781.31653717381.721412.722420240402809529447.64387.432921.44621.634018.44985.835861.55172.1400365522.343580.65931.747431.36465.554945.57490.8652108694.376912.910133.891310.911851.1107367.214014.112238912362612476112578612674312762712845312922712998813075613144813212943919.548140.651588.255636.96151666878.371691.277449.587032.996918.1110595.3128444.6469895342950145499815468852215471195450637106388184109148992
利用EV軟件,生成Yi、X2、X3、X4、X5、X6、X7等數(shù)據(jù),采用這些數(shù)據(jù)對(duì)模型進(jìn)行OLS回歸。
(二)診斷多重共線性
1、雙擊“Eviews〞,進(jìn)入主頁(yè)。輸入數(shù)據(jù):點(diǎn)擊主菜單中的File/Open/EVWorkfile—Excel—多重共線性的數(shù)據(jù).xls;2、在EV主頁(yè)界面的窗口,輸入“l(fā)sycx2x3x4x5x6x7〞,按“Enter〞.出現(xiàn)OLS回歸結(jié)果,圖2:圖2:OLS回歸結(jié)果
DependentVariable:YMethod:LeastSquaresDate:10/12/10Time:17:07Sample:19782023Includedobservations:30
VariableCX2X3X4X5X6X7
R-squared
Coefficient
-6646.694-0.9706881.084654-2.7639280.077613-0.0471190.007580
Std.Error
6454.1560.3304090.2285212.0769940.0679740.0815090.035039
t-Statistic
-1.029832-2.9378414.746397-1.3307351.141808-0.5780840.216329
Prob.
0.31380.00740.00010.19630.26530.56880.8306
10049.0412585.5116.9363417.26329701.47470.000000
0.994565Meandependentvar0.993147S.D.dependentvar1041.849Akaikeinfocriterion24965329Schwarzcriterion-247.0452F-statistic2.167410Prob(F-statistic)
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
由此可見(jiàn),該模型的可決系數(shù)為0.995,修正的可決系數(shù)為0.993,模型擬和很好,F(xiàn)統(tǒng)計(jì)量為701.47,模型擬和很好,
回歸方程整體上顯著。
但是當(dāng)=0.05時(shí),t/2(nk)=t0.025(23)=2.069,不僅X4、X5、X6、X7的系數(shù)t檢驗(yàn)不顯著,而且X2、X4、X6系數(shù)的符號(hào)與預(yù)期相反,這說(shuō)明很可能存在嚴(yán)重的多重共線性。(即除了農(nóng)業(yè)增加值X2、工業(yè)增加值X3外,其他因素對(duì)財(cái)政收入的影響都不顯著,且農(nóng)業(yè)增加值X2、建筑業(yè)增加值X4、最終消費(fèi)X6的回歸系數(shù)還是負(fù)數(shù),這說(shuō)明很可能存在嚴(yán)重的多重共線性。)
3、計(jì)算各解釋變量的相關(guān)系數(shù):
在Workfile窗口,選擇X2、X3、X4、X5、X6、X7數(shù)據(jù),點(diǎn)擊“Quick〞—GroupStatistics—Correlations—OK,出現(xiàn)相關(guān)系數(shù)矩陣,如圖3:
圖3:相關(guān)系數(shù)矩陣
X2X3X4X5X6X7
X210.9729806145
614799789067452466772465
193188687581178436215
0.98266062340.9985218083
1280514159604353
0.92797842940.84390020650.8641521359
0.98896261970.99264123670.99605684340.8888480555
151582
0.22619996580.1294437103038776726480.1851728808
1
X36147
X49978993188
X5067456875828051
X624667117844159646979
X7724653621504353087870.1851728808
51582
0.97298061450.98266062340.92797842940.98896261970.2261999658
0.99852180830.84390020650.99264123670.1294437103
0.86415213590.99605684340.1546457184
0.88884805550.3877672648
由相關(guān)系數(shù)矩陣可以看出,各解釋變量相互之間的相關(guān)系數(shù)較高,特別是農(nóng)業(yè)增加值X2、工業(yè)增加值X3、建筑業(yè)增加值X4、最終消費(fèi)之間X6,相關(guān)系數(shù)都在0.8以上。這說(shuō)明模型存在著多重共線性。
(三)修正多重共線性
1、采用逐步回歸法,去檢驗(yàn)和解決多重共線性問(wèn)題。分別作Y對(duì)X2、X3、X4、X5、X6、X7的一元回歸,結(jié)果如下圖4:在EV主頁(yè)界面的窗口,輸入“l(fā)sycx2〞,“回車鍵〞。
DependentVariable:YMethod:LeastSquaresDate:10/12/10Time:17:49Sample:19782023Includedobservations:30
VariableCX2
Coefficient
-4086.5441.454186
Std.Error
1463.0910.117235
t-Statistic
-2.79309012.40398
Prob.
0.00930.0000
R-squared
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
0.846034Meandependentvar0.840536S.D.dependentvar5025.770Akaikeinfocriterion7.07E+08Schwarzcriterion-297.2033F-statistic0.166951Prob(F-statistic)
10049.0412585.5119.9468920.04030153.85880.000000
依次如上推出X3、X4、X5、X6、X7的一元回歸。綜上所述,結(jié)果如下圖4:
圖4.一元回歸估計(jì)結(jié)果
2、其中,參與X3的R最大,以X3為基礎(chǔ),順次參與其他變量逐步回歸。結(jié)果如下圖5:
DependentVariable:YMethod:LeastSquaresDate:10/13/10Time:01:27Sample:19782023Includedobservations:30
VariableCX2X3
R-squared
Coefficient
1976.086-1.1053390.721989
Std.Error
388.24130.1052220.028879
t-Statistic
5.089841-10.5048625.00056
Prob.
0.00000.00000.0000
10049.0412585.5116.8293016.969422103.9460.000000
2
0.993624Meandependentvar0.993152S.D.dependentvar1041.474Akaikeinfocriterion29286057Schwarzcriterion-249.4395F-statistic1.662637Prob(F-statistic)
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
依照上面,在順次參與X4、X5、X6、X7,進(jìn)行逐步回歸。綜合結(jié)果如下圖5:
圖5.參與新變量的回歸結(jié)果(一)
經(jīng)比較,新參與X2的方程R=0.993152,改進(jìn)最大,但是X2得系數(shù)為負(fù),這顯然不符題意。在X3的基礎(chǔ)上分別參與其他變量后發(fā)現(xiàn),X2,X4,X5,X6,X7的系數(shù)都為負(fù),與預(yù)期估計(jì)違背。因此這些變量都會(huì)引起嚴(yán)重的多重共線性,全部剔除,只保存X3。修正的回歸結(jié)果為:
DependentVariable:YMethod:LeastSquaresDate:10/12/10Time:17:50Sample:19782023Includedobservations:30
VariableCX3
R-squared
Coefficient
-1075.2890.426817
Std.Error
570.53370.014768
t-Statistic
-1.88470828.90168
Prob.
0.06990.0000
10049.0412585.5118.3893518.48276835.30740.000000
2
0.967567Meandependentvar0.966408S.D.dependentvar2306.678Akaikeinfocriterion1.49E+08Schwarzcriterion-273.8402F-statistic0.292531Prob(F-statistic)
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
=-1075.289+0.426817X3Yi
(-1.884708)(28.90168)
2
R2=0.967567R=0.966408F=835.3074
這說(shuō)明在其他因素不變的狀況下,工業(yè)增加值每增加1億元,財(cái)政收入平均增加0.426817億元。
四、實(shí)踐結(jié)果報(bào)告:
為研究“農(nóng)業(yè)的發(fā)展反而會(huì)減少財(cái)政收入〞的問(wèn)題,根據(jù)1978-2023年的財(cái)政收入,農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加值等數(shù)據(jù),運(yùn)用EV軟件,做回歸分析,判斷是否存在多重共線性,以及修正。最終修正的回歸結(jié)果為:
=-1075.289+0.426817X3Yi
(-1.884708)(28.90168)
2
R2=0.967567R=0.966408F=835.3074
這說(shuō)明在其他因素不變的狀況下,工業(yè)增加值每增加1億元,財(cái)政收入平均增加0.426817億元。
可決系數(shù)為0.967567,較高,說(shuō)明模型擬合優(yōu)度高;F值為835.3074,說(shuō)明整個(gè)方程顯著;斜率系數(shù)的t值28.90168,大于t統(tǒng)計(jì)量,t檢驗(yàn)顯著,符合題意。
逐步回歸后的結(jié)果雖然實(shí)現(xiàn)了減輕多重共線性的目的,但反映農(nóng)業(yè)增加值,建筑業(yè)增加值的X2,X3等也一并從模型中剔除出去了,可能會(huì)帶來(lái)設(shè)定偏誤,這是在使用逐步回歸時(shí)需要注意的問(wèn)題。
附加:
1、分別作Y對(duì)X2、X3、X4、X5、X6、X7的一元回歸,結(jié)果如下:
lsycx2
DependentVariable:YMethod:LeastSquaresDate:10/12/10Time:17:49Sample:19782023Includedobservations:30
VariableCX2
R-squared
Coefficient
-4086.5441.454186
Std.Error
1463.0910.117235
t-Statistic
-2.79309012.40398
Prob.
0.00930.0000
10049.0412585.5119.9468920.04030153.85880.000000
0.846034Meandependentvar0.840536S.D.dependentvar5025.770Akaikeinfocriterion7.07E+08Schwarzcriterion-297.2033F-statistic0.166951Prob(F-statistic)
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
lsycx3
DependentVariable:YMethod:LeastSquaresDate:10/12/10Time:17:50Sample:19782023Includedobservations:30
VariableCX3
R-squared
Coefficient
-1075.2890.426817
Std.Error
570.53370.014768
t-Statistic
-1.88470828.90168
Prob.
0.06990.0000
10049.0412585.5118.3893518.48276835.30740.000000
0.967567Meandependentvar0.966408S.D.dependentvar2306.678Akaikeinfocriterion1.49E+08Schwarzcriterion-273.8402F-statistic0.292531Prob(F-statistic)
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
lsycx4
DependentVariable:YMethod:LeastSquares
Std.Error
727.98960.140530
t-Statistic
-1.69669522.67733
Coefficient
-1235.1773.186851
Prob.
0.10080.0000
10049.0412585.5118.8543718.94778514.26140.000000
Date:10/12/10Time:17:50Sample:19782023Includedobservations:30
VariableCX4
R-squared
0.948364Meandependentvar0.946520S.D.dependentvar2910.486Akaikeinfocriterion2.37E+08Schwarzcriterion-280.8155F-statistic0.215531Prob(F-statistic)
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
lsycx5
DependentVariable:YMethod:LeastSquares
Date:10/12/10Time:17:51Sample:19782023Includedobservations:30
VariableCX5
R-squared
Coefficient
-86420.420.829789
Std.Error
15618.350.133707
t-Statistic
-5.5332606.206025
Prob.
0.00000.0000
10049.0412585.5120.9526921.0461138.514740.000001
0.579041Meandependentvar0.564006S.D.dependentvar8310.188Akaikeinfocriterion1.93E+09Schwarzcriterion-312.2904F-statistic0.132458Prob(F-statistic)
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
lsycx6
DependentVariable:YMethod:LeastSquares
Std.Error
934.34950.018222
t-Statistic
-2.16928118.12895
Coefficient
-2026.8670.330354
Prob.
0.03870.0000
10049.0412585.5119.2733419.36675328.65890.000000
Date:10/12/10Time:17:51Sample:19782023Includedobservations:30
VariableCX6
R-squared
0.921494Meandependentvar0.918690S.D.dependentvar3588.750Akaikeinfocriterion3.61E+08Schwarzcriterion-287.1000F-statistic0.189127Prob(F-statistic)
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
lsycx7
DependentVariable:YMethod:LeastSquares
Std.Error
16135.440.348162
t-Statistic
0.3058250.320338
Coefficient
4934.6160.111530
Prob.
0.76200.7511
10049.04
Date:10/12/10Time:18:36Sample:19782023Includedobservations:30
VariableCX7
R-squared
0.003651Meandependentvar
S.E.ofregressionSumsquaredresidLoglikelihoodDurbin-Watsonstat
12784.87Akaikeinfocriterion4.58E+09Schwarzcriterion-325.2138F-statistic0.065981Prob(F-statistic)
21.8142521.907670.1026160.751091
2、以X3為基礎(chǔ),順次參與其他變量逐步回歸。X3、X2:
DependentVariable:YMethod:LeastSquaresDate:10/13/10Time:01:27Sample:19782023Includedobservations:30
VariableCX2X3
R-squared
Coefficient
1976.086-1.1053390.721989
Std.Error
388.24130.1052220.028879
t-Statistic
5.089841-10.5048625.00056
Prob.
0.00000.00000.0000
10049.0412585.5116.8293016.969422103.9460.000000
0.993624Meandependentvar0.993152S.D.dependentvar1041.474Akaikeinfocriterion29286057Schwarzcriterion-249.4395F-statistic1.662637Prob(F-statistic)
AdjustedR-squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin-WatsonstatX3、X4:
DependentVariable:YMethod:LeastSquares
Std.Error
318.09850.1441311.087001
t-Statistic
-0.75897811.46367-8.514941
Coefficient
-241.42971.652270-9.255748
Prob.
0.45440.00000.0000
10049.0412585.5117.15165
Date:10/13/10Time:01:27Sample:19782023Includedobservations:30
VariableCX3X4
R-squared
0.991199Meandependentvar0.990547S.D.dependentvar1223.617Akaikeinfocriterion
AdjustedR-squaredS.E.ofregression
LoglikelihoodDurbin-WatsonstatX3、X5:
DependentVariable:YMethod:LeastSquares
-254.2747F-statistic1.669559Prob(F-statistic)
1520.4770.000000
Std.Error
5304.5140.0195760.049197
t-Statistic
5.10713826.29703-5.325453
Coefficient
27090.890.514796-0.261997
Prob.
0.00000.00000.0000
10049.0412585.5117.7379817.87810839.94790.000000
Date:10/13/10Time:01:28Sample:19782023Includedobservations:30
VariableCX3X5
R-squared
0.984182Meandependentvar0.983010S.D.dependentvar1640.462Akaikeinfocriterion72660152Schwarzcriterion-263.0698F-statistic0.451996Prob(F-statistic)
Adj
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 防靜電手套戰(zhàn)略市場(chǎng)規(guī)劃報(bào)告
- 電子握力計(jì)產(chǎn)業(yè)分析報(bào)告
- 底涂漆市場(chǎng)分析及競(jìng)爭(zhēng)策略分析報(bào)告
- 鹽城市婦幼保健院招聘專業(yè)技術(shù)人員筆試真題2024
- 衢州市衛(wèi)生健康委員會(huì)衢州市人民醫(yī)院招聘筆試真題2024
- 內(nèi)蒙古工業(yè)大學(xué)事業(yè)編制人員招聘筆試真題2024
- 2024年杭州市采荷中學(xué)教師招聘考試真題
- 河北承德醫(yī)學(xué)院附屬醫(yī)院招聘工作人員筆試真題2024
- 2025年大規(guī)格石英玻璃擴(kuò)散管項(xiàng)目發(fā)展計(jì)劃
- 通信行業(yè)勞動(dòng)力分配及保障措施
- 頸椎病針灸穴位治療
- 2025年中國(guó)汽車車燈行業(yè)市場(chǎng)現(xiàn)狀、前景分析研究報(bào)告(智研咨詢發(fā)布)
- 湯臣倍健營(yíng)養(yǎng)品市場(chǎng)推廣方案
- 2024年湖北省中考語(yǔ)文真題(學(xué)生版+解析版)
- 告訴我地址 -從IPv4到IPv6的傳奇 課件 2024-2025學(xué)年清華大學(xué)版(2024)B版初中信息技術(shù)七年級(jí)上冊(cè)
- 2024旋翼無(wú)人機(jī)巡檢作業(yè)規(guī)范
- 醫(yī)學(xué)教程 《急性闌尾炎幻燈》
- 重型貨車整車運(yùn)輸協(xié)議樣本
- 讀后續(xù)寫-期中真題匯編(原卷版)
- (部編版)統(tǒng)編版小學(xué)語(yǔ)文教材目錄(一至六年級(jí)上冊(cè)下冊(cè)齊全)
- 允許孩子犯錯(cuò)課件
評(píng)論
0/150
提交評(píng)論