版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.某單位組織職工開展植樹活動,植樹量與人數(shù)之間關系如圖,下列說法不正確的是()A.參加本次植樹活動共有30人 B.每人植樹量的眾數(shù)是4棵C.每人植樹量的中位數(shù)是5棵 D.每人植樹量的平均數(shù)是5棵2.下列計算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=3.某校八(2)班6名女同學的體重(單位:kg)分別為35,36,38,40,42,42,則這組數(shù)據(jù)的中位數(shù)是()A.38 B.39 C.40 D.424.關于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實數(shù)根,則m的取值范圍是()A.m> B.m>且m≠2 C.﹣<m<2 D.<m<25.如圖所示,的頂點是正方形網(wǎng)格的格點,則的值為()A. B. C. D.6.在2014年5月崇左市教育局舉行的“經(jīng)典詩朗誦”演講比賽中,有11名學生參加決賽,他們決賽的成績各不相同,其中的一名學生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學生成績的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差7.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點,則CM的長為()A. B.2 C. D.38.如圖,⊙O內切于正方形ABCD,邊BC、DC上兩點M、N,且MN是⊙O的切線,當△AMN的面積為4時,則⊙O的半徑r是()A. B.2 C.2 D.49.下列交通標志是中心對稱圖形的為()A. B. C. D.10.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1二、填空題(本大題共6個小題,每小題3分,共18分)11.在矩形ABCD中,AB=4,BC=3,點P在AB上.若將△DAP沿DP折疊,使點A落在矩形對角線上的處,則AP的長為__________.12.已知一個多邊形的每一個外角都等于,則這個多邊形的邊數(shù)是.13.某?!鞍僮兡Х健鄙鐖F為組織同學們參加學??萍脊?jié)的“最強大腦”大賽,準備購買A,B兩款魔方.社長發(fā)現(xiàn)若購買2個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同.求每款魔方的單價.設A款魔方的單價為x元,B款魔方的單價為y元,依題意可列方程組為_______.14.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.15.函數(shù)y=中,自變量x的取值范圍是_____.16.=_____.三、解答題(共8題,共72分)17.(8分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.18.(8分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積19.(8分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關系,并說明理由;(2)若AD=2,AC=,求AB的長.20.(8分)(1)計算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡,再求值:()÷,其中x=﹣1.21.(8分)先化簡再求值:÷(﹣1),其中x=.22.(10分)(1)如圖1,半徑為2的圓O內有一點P,切OP=1,弦AB過點P,則弦AB長度的最大值為__________;最小值為___________.圖①(2)如圖2,△ABC是葛叔叔家的菜地示意圖,其中∠ABC=90°,AB=80米,BC=60米,現(xiàn)在他利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔想建的魚塘是四邊形ABCD,且滿足∠ADC=60°,你認為葛叔叔的想法能實現(xiàn)嗎?若能,求出這個四邊形魚塘面積和周長的最大值;若不能,請說明理由.圖②23.(12分)尺規(guī)作圖:用直尺和圓規(guī)作圖,不寫作法,保留痕跡.已知:如圖,線段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.24.學生對待學習的態(tài)度一直是教育工作者關注的問題之一.為此,某區(qū)教委對該區(qū)部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:此次抽樣調查中,共調查了名學生;將圖①補充完整;求出圖②中C級所占的圓心角的度數(shù).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動共有30人,結論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數(shù)是4棵,結論B正確;C、∵共有30個數(shù),第15、16個數(shù)為5,∴每人植樹量的中位數(shù)是5棵,結論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數(shù)約是4.73棵,結論D不正確.故選D.考點:1.條形統(tǒng)計圖;2.加權平均數(shù);3.中位數(shù);4.眾數(shù).2、D【解析】
各項中每項計算得到結果,即可作出判斷.【詳解】解:A.原式=8,錯誤;B.原式=2+4,錯誤;C.原式=1,錯誤;D.原式=x6y﹣3=,正確.故選D.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.3、B【解析】
根據(jù)中位數(shù)的定義求解,把數(shù)據(jù)按大小排列,第3、4個數(shù)的平均數(shù)為中位數(shù).【詳解】解:由于共有6個數(shù)據(jù),
所以中位數(shù)為第3、4個數(shù)的平均數(shù),即中位數(shù)為=39,
故選:B.【點睛】本題主要考查了中位數(shù).要明確定義:將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,若這組數(shù)據(jù)的個數(shù)是奇數(shù),則最中間的那個數(shù)叫做這組數(shù)據(jù)的中位數(shù);若這組數(shù)據(jù)的個數(shù)是偶數(shù),則最中間兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).4、D【解析】
根據(jù)一元二次方程的根的判別式的意義得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2)>0,解得m>且m≠﹣2,再利用根與系數(shù)的關系得到,m﹣2≠0,解得<m<2,即可求出答案.【詳解】解:由題意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實數(shù)根,∴﹣>0,m﹣2≠0,∴<m<2,∵m>,∴<m<2,故選:D.【點睛】本題主要考查對根的判別式和根與系數(shù)的關系的理解能力及計算能力,掌握根據(jù)方程根的情況確定方程中字母系數(shù)的取值范圍是解題的關鍵.5、B【解析】
連接CD,求出CD⊥AB,根據(jù)勾股定理求出AC,在Rt△ADC中,根據(jù)銳角三角函數(shù)定義求出即可.【詳解】解:連接CD(如圖所示),設小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.【點睛】本題考查了勾股定理,銳角三角形函數(shù)的定義,等腰三角形的性質,直角三角形的判定的應用,關鍵是構造直角三角形.6、B【解析】
解:11人成績的中位數(shù)是第6名的成績.參賽選手要想知道自己是否能進入前6名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.故選B.【點睛】本題考查統(tǒng)計量的選擇,掌握中位數(shù)的意義是本題的解題關鍵.7、C【解析】
延長BC到E使BE=AD,利用中點的性質得到CM=DE=AB,再利用勾股定理進行計算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點,∵M是BD的中點,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點睛】此題考查平行四邊形的性質,勾股定理,解題關鍵在于作輔助線.8、C【解析】
連接,交于點設則根據(jù)△AMN的面積為4,列出方程求出的值,再計算半徑即可.【詳解】連接,交于點內切于正方形為的切線,經(jīng)過點為等腰直角三角形,為的切線,設則△AMN的面積為4,則即解得故選:C.【點睛】考查圓的切線的性質,等腰直角三角形的性質,三角形的面積公式,綜合性比較強.9、C【解析】
根據(jù)中心對稱圖形的定義即可解答.【詳解】解:A、屬于軸對稱圖形,不是中心對稱的圖形,不合題意;
B、是中心對稱的圖形,但不是交通標志,不符合題意;
C、屬于軸對稱圖形,屬于中心對稱的圖形,符合題意;
D、不是中心對稱的圖形,不合題意.
故選C.【點睛】本題考查中心對稱圖形的定義:繞對稱中心旋轉180度后所得的圖形與原圖形完全重合.10、A【解析】
分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點睛】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.二、填空題(本大題共6個小題,每小題3分,共18分)11、或【解析】
①點A落在矩形對角線BD上,如圖1,∵AB=4,BC=3,∴BD=5,根據(jù)折疊的性質,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,設AP=x,則BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②點A落在矩形對角線AC上,如圖2,根據(jù)折疊的性質可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案為或.12、5【解析】
∵多邊形的每個外角都等于72°,∵多邊形的外角和為360°,∴360°÷72°=5,∴這個多邊形的邊數(shù)為5.故答案為5.13、【解析】分析:設A款魔方的單價為x元,B魔方單價為y元,根據(jù)“購買兩個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同”,即可得出關于x,y的二元一次方程組,此題得解.解:設A魔方的單價為x元,B款魔方的單價為y元,根據(jù)題意得:故答案為點睛:本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.14、22.5【解析】
連接半徑OC,先根據(jù)點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質得:∠A=∠ACO=×45°,可得結論.【詳解】連接OC,
∵OE⊥AB,
∴∠EOB=90°,
∵點C為的中點,
∴∠BOC=45°,
∵OA=OC,
∴∠A=∠ACO=×45°=22.5°,
故答案為:22.5°.【點睛】本題考查了圓周角定理與等腰三角形的性質.解題的關鍵是注意掌握數(shù)形結合思想的應用.15、x≠﹣.【解析】
該函數(shù)是分式,分式有意義的條件是分母不等于1,故分母x﹣1≠1,解得x的范圍.【詳解】解:根據(jù)分式有意義的條件得:2x+3≠1解得:故答案為【點睛】本題考查了函數(shù)自變量取值范圍的求法.要使得本題函數(shù)式子有意義,必須滿足分母不等于1.16、1【解析】分析:第一項根據(jù)非零數(shù)的零次冪等于1計算,第二項根據(jù)算術平方根的意義化簡,第三項根據(jù)負整數(shù)指數(shù)冪等于這個數(shù)的正整數(shù)指數(shù)冪的倒數(shù)計算.詳解:原式=1+2﹣2=1.故答案為:1.點睛:本題考查了實數(shù)的運算,熟練掌握零指數(shù)冪、算術平方根的意義,負整數(shù)指數(shù)冪的運算法則是解答本題的關鍵.三、解答題(共8題,共72分)17、(1)作圖見解析;;(2)作圖見解析.【解析】試題分析:(1)通過數(shù)格子可得到點P關于AC的對稱點,再直接利用勾股定理可得到周長;(2)利用網(wǎng)格結合矩形的性質以及勾股定理可畫出矩形.試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長為:;(2)如圖2所示:四邊形ABCD即為所求.考點:1軸對稱;2勾股定理.18、(1)證明見解析;(2).【解析】
(1)先根據(jù)直角三角形斜邊上中線的性質,得出DE=AB=AE,DF=AC=AF,再根據(jù)AB=AC,點E、F分別是AB、AC的中點,即可得到AE=AF=DE=DF,進而判定四邊形AEDF是菱形;
(2)根據(jù)等邊三角形的性質得出EF=5,AD=5,進而得到菱形AEDF的面積S.【詳解】解:(1)∵AD⊥BC,點E、F分別是AB、AC的中點,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,點E、F分別是AB、AC的中點,
∴AE=AF,
∴AE=AF=DE=DF,
∴四邊形AEDF是菱形;
(2)如圖,
∵AB=AC=BC=10,
∴EF=5,AD=5,
∴菱形AEDF的面積S=EF?AD=×5×5=.【點睛】本題考查菱形的判定與性質的運用,解題時注意:四條邊相等的四邊形是菱形;菱形的面積等于對角線長乘積的一半.19、(1)證明見解析(2)3【解析】
(1)連接,由為的中點,得到,等量代換得到,根據(jù)平行線的性質得到,即可得到結論;(2)連接,由勾股定理得到,根據(jù)切割線定理得到,根據(jù)勾股定理得到,由圓周角定理得到,即可得到結論.【詳解】相切,連接,∵為的中點,∴,∵,∴,∴,∴,∵,∴,∴直線與相切;方法:連接,∵,,∵,∴,∵是的切線,∴,∴,∴,∵為的中點,∴,∵為的直徑,∴,∴.方法:∵,易得,∴,∴.【點睛】本題考查了直線與圓的位置關系,切線的判定和性質,圓周角定理,勾股定理,平行線的性質,切割線定理,熟練掌握各定理是解題的關鍵.20、(1)(2)【解析】
(1)根據(jù)負整數(shù)指數(shù)冪、二次根式、零指數(shù)冪和特殊角的三角函數(shù)值可以解答本題;(2)根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.【詳解】解:(1)原式=﹣+1+2=﹣+1+=﹣;(2)原式====,當x=﹣1時,原式==.【點睛】本題考查分式的化簡求值、絕對值、零指數(shù)冪、負整數(shù)指數(shù)冪和特殊角的三角函數(shù)值,解答本題的關鍵是明確它們各自的計算方法.21、【解析】分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.詳解:原式====當時,原式==.點睛:本題考查了分式的化簡求值,解答本題的關鍵是明確分式化簡求值的方法.22、(1)弦AB長度的最大值為4,最小值為2;(2)面積最大值為(2500+2400)平方米,周長最大值為340米.【解析】
(1)當AB是過P點的直徑時,AB最長;當AB⊥OP時,AB最短,分別求出即可.(2)如圖在△ABC的一側以AC為邊做等邊三角形AEC,再做△AEC的外接圓,則滿足∠ADC=60°的點D在優(yōu)弧AEC上(點D不與A、C重合),當D與E重合時,S△ADC最大值=S△AEC,由S△ABC為定值,故此時四邊形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 141腦血管疾病教案
- 預應力混凝土結構的受力性能1
- 婚紗攝影借款合同三篇
- 促進同學間合作的活動計劃
- 優(yōu)化管理流程的行動方案計劃
- 中小客車火災自救逃生技巧培訓
- 協(xié)調生產計劃
- 打造幸福小班的教育策略計劃
- 持續(xù)吸引新成員的策略計劃
- 辦公用品物流服務協(xié)議三篇
- 青島版三年級上冊數(shù)學試題期中測試卷(含答案)
- 綿陽市高中2022級(2025屆)高三第一次診斷性考試(一診)地理試卷
- 2024-2025學年七年級上學期數(shù)學期中模擬試卷(蘇科版2024)(含答案解析)
- 北京市海淀區(qū)2024-2025學年高三上學期10月考英語試卷 含解析
- 四川省成都2023-2024學年高二上學期期中物理試題(含答案)
- 中國港口行業(yè)投資前景分析及未來發(fā)展趨勢研究報告(智研咨詢發(fā)布)
- 軍事理論(2024年版)學習通超星期末考試答案章節(jié)答案2024年
- 廣東省廣州市天河區(qū)2023-2024學年高一上學期11月期中考試化學試題
- 海爾智家財務報表分析報告
- 2024-2030年中國泳裝(泳裝)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 2024年急性胰腺炎急診診治專家共識解讀課件
評論
0/150
提交評論