2023屆湖北省宜昌市一中、恩施高中高三第三次模擬考試數(shù)學試卷含解析_第1頁
2023屆湖北省宜昌市一中、恩施高中高三第三次模擬考試數(shù)學試卷含解析_第2頁
2023屆湖北省宜昌市一中、恩施高中高三第三次模擬考試數(shù)學試卷含解析_第3頁
2023屆湖北省宜昌市一中、恩施高中高三第三次模擬考試數(shù)學試卷含解析_第4頁
2023屆湖北省宜昌市一中、恩施高中高三第三次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.2.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.63.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(包括邊界),則A.-3,1 B.-3,5 C.-∞,-34.已知實數(shù)滿足,則的最小值為()A. B. C. D.5.已知是虛數(shù)單位,若,則()A. B.2 C. D.36.某地區(qū)高考改革,實行“3+2+1”模式,即“3”指語文、數(shù)學、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學科中任意選擇兩門學科,則一名學生的不同選科組合有()A.8種 B.12種 C.16種 D.20種7.如圖是甲、乙兩位同學在六次數(shù)學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等8.已知復數(shù)z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.10.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙11.復數(shù),是虛數(shù)單位,則下列結論正確的是A. B.的共軛復數(shù)為C.的實部與虛部之和為1 D.在復平面內的對應點位于第一象限12.用電腦每次可以從區(qū)間內自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列()中,若,,則的值是______.14.已知,,分別為內角,,的對邊,,,,則的面積為__________.15.函數(shù)的圖象在處的切線與直線互相垂直,則_____.16.平面向量與的夾角為,,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.18.(12分)已知點為圓:上的動點,為坐標原點,過作直線的垂線(當、重合時,直線約定為軸),垂足為,以為極點,軸的正半軸為極軸建立極坐標系.(1)求點的軌跡的極坐標方程;(2)直線的極坐標方程為,連接并延長交于,求的最大值.19.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實數(shù)a;若不能,請說明理由.(2)若在處取得極大值,求實數(shù)a的取值范圍.20.(12分)在平面直角坐標系中,直線與拋物線:交于,兩點,且當時,.(1)求的值;(2)設線段的中點為,拋物線在點處的切線與的準線交于點,證明:軸.21.(12分)已知函數(shù)(1)求f(x)的單調遞增區(qū)間;(2)△ABC內角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.22.(10分)某公司欲投資一新型產品的批量生產,預計該產品的每日生產總成本價格)(單位:萬元)是每日產量(單位:噸)的函數(shù):.(1)求當日產量為噸時的邊際成本(即生產過程中一段時間的總成本對該段時間產量的導數(shù));(2)記每日生產平均成本求證:;(3)若財團每日注入資金可按數(shù)列(單位:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.2、A【解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.3、D【解析】

畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內的點(x,y)和定點P(2,-1)設k=y+1x-2,結合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關鍵有兩個:一是根據(jù)數(shù)形結合的方法求解問題,即把y+1x-24、A【解析】

所求的分母特征,利用變形構造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當且僅當時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關鍵.(1)拼湊的技巧,以整式為基礎,注意利用系數(shù)的變化以及等式中常數(shù)的調整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(3)拆項、添項應注意檢驗利用基本不等式的前提.5、A【解析】

直接將兩邊同時乘以求出復數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數(shù)的運算及其模的求法,是基礎題.6、C【解析】

分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應的組合數(shù),即可求出結果.【詳解】若一名學生只選物理和歷史中的一門,則有種組合;若一名學生物理和歷史都選,則有種組合;因此共有種組合.故選C【點睛】本題主要考查兩個計數(shù)原理,熟記其計數(shù)原理的概念,即可求出結果,屬于常考題型.7、B【解析】

由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.8、A【解析】

設,由得:,由復數(shù)相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數(shù)相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數(shù)的求法,考查對復數(shù)相等的理解,考查復數(shù)在復平面對應的點,考查運算能力,屬于??碱}.9、A【解析】

設,因為,得到,利用直線的斜率公式,得到,結合基本不等式,即可求解.【詳解】由題意,拋物線的焦點坐標為,設,因為,即線段的中點,所以,所以直線的斜率,當且僅當,即時等號成立,所以直線的斜率的最大值為1.故選:A.【點睛】本題主要考查了拋物線的方程及其應用,直線的斜率公式,以及利用基本不等式求最值的應用,著重考查了推理與運算能力,屬于中檔試題.10、A【解析】

利用逐一驗證的方法進行求解.【詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【點睛】本題將數(shù)學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.11、D【解析】

利用復數(shù)的四則運算,求得,在根據(jù)復數(shù)的模,復數(shù)與共軛復數(shù)的概念等即可得到結論.【詳解】由題意,則,的共軛復數(shù)為,復數(shù)的實部與虛部之和為,在復平面內對應點位于第一象限,故選D.【點睛】復數(shù)代數(shù)形式的加減乘除運算的法則是進行復數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化,其次要熟悉復數(shù)相關基本概念,如復數(shù)的實部為、虛部為、模為、對應點為、共軛為.12、C【解析】

由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、-15【解析】

是等差數(shù)列,則有,可得的值,再由可得,計算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點睛】本題考查等差數(shù)列的性質,也可以由已知條件求出和公差,再計算.14、【解析】

根據(jù)題意,利用余弦定理求得,再運用三角形的面積公式即可求得結果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應用和三角形的面積公式,考查計算能力.15、1.【解析】

求函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義結合直線垂直的直線斜率的關系建立方程關系進行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結果:【點睛】本題主要考查直線垂直的應用以及導數(shù)的幾何意義,根據(jù)條件建立方程關系是解決本題的關鍵.16、【解析】

由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數(shù)量積,進而即可求出結果,屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用零點分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結合基本不等式,求得的最小值.【詳解】(1)當時,,即,無解;當時,,即,得;當時,,即,得.故所求不等式的解集為.(2)因為,所以,則,.當且僅當即時取等號.故的最小值為.【點睛】本小題主要考查零點分段法解絕對值不等式,考查利用基本不等式求最值,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.18、(1);(2)【解析】

(1)設的極坐標為,在中,有,即可得結果;(2)設射線:,,圓的極坐標方程為,聯(lián)立兩個方程,可求出,聯(lián)立可得,則計算可得,利用三角函數(shù)的性質可得最值.【詳解】(1)設的極坐標為,在中,有,點的軌跡的極坐標方程為;(2)設射線:,,圓的極坐標方程為,由得:,由得:,,,當,即時,,的最大值為.【點睛】本題考查極坐標方程的應用,考查三角函數(shù)性質的應用,是中檔題.19、(1)答案見解析(2)【解析】

(1)假設函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導數(shù),設(),根據(jù)函數(shù)的單調性及在處取得極大值求出a的范圍即可.【詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無實數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),,設(),恒大于零.在上單調遞增.又,,,∴存在唯一,使,且時,時,①當時,恒成立,在單調遞增,無極值,不合題意.②當時,可得當時,,當時,.所以在內單調遞減,在內單調遞增,所以在處取得極小值,不合題意.③當時,可得當時,,當時,.所以在內單調遞增,在內單調遞減,所以在處取得極大值,符合題意.此時由得即,綜上可知,實數(shù)a的取值范圍為.【點睛】本題考查了函數(shù)的單調性,最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,屬于難題.20、(1)1;(2)見解析【解析】

(1)設,,聯(lián)立直線和拋物線方程,得,寫出韋達定理,根據(jù)弦長公式,即可求出;(2)由,得,根據(jù)導數(shù)的幾何意義,求出拋物線在點點處切線方程,進而求出,即可證出軸.【詳解】解:(1)設,,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設,,由,得,從而拋物線在點點處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【點睛】本題考查直線與拋物線的位置關系,涉及聯(lián)立方程組、韋達定理、弦長公式以及利用導數(shù)求切線方程,考查轉化思想和計算能力.21、(1)(2)【解析】

(1)利用降次公式、輔助角公式化簡解析式,根據(jù)三角函數(shù)單調區(qū)間的求法,求得的單調遞增區(qū)間.(2)先由求得,利用正弦定理得到,結合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調遞增區(qū)間為.(2)因為且為銳角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點睛】本小題主要考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論