2023屆云南省祥云縣中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁(yè)
2023屆云南省祥云縣中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁(yè)
2023屆云南省祥云縣中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁(yè)
2023屆云南省祥云縣中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁(yè)
2023屆云南省祥云縣中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在矩形ABCD中,AB=2,BC=1.若點(diǎn)E是邊CD的中點(diǎn),連接AE,過(guò)點(diǎn)B作BF⊥AE交AE于點(diǎn)F,則BF的長(zhǎng)為()A. B. C. D.2.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(﹣3,﹣4),頂點(diǎn)C在x軸的負(fù)半軸上,函數(shù)y=(x<0)的圖象經(jīng)過(guò)菱形OABC中心E點(diǎn),則k的值為()A.6 B.8 C.10 D.123.在同一平面內(nèi),下列說(shuō)法:①過(guò)兩點(diǎn)有且只有一條直線;②兩條不相同的直線有且只有一個(gè)公共點(diǎn);③經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線垂直;④經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行,其中正確的個(gè)數(shù)為(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關(guān)于直線x=1對(duì)稱,那么下列說(shuō)法正確的是()A.將拋物線c沿x軸向右平移個(gè)單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個(gè)單位得到拋物線c′C.將拋物線c沿x軸向右平移個(gè)單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個(gè)單位得到拋物線c′5.如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是弧AB的中點(diǎn),連接AC、BC,則圖中陰影部分面積是()A. B.C. D.6.某班要推選學(xué)生參加學(xué)校的“詩(shī)詞達(dá)人”比賽,有7名學(xué)生報(bào)名參加班級(jí)選拔賽,他們的選拔賽成績(jī)各不相同,現(xiàn)取其中前3名參加學(xué)校比賽.小紅要判斷自己能否參加學(xué)校比賽,在知道自己成績(jī)的情況下,還需要知道這7名學(xué)生成績(jī)的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差7.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣28.如圖,將一正方形紙片沿圖(1)、(2)的虛線對(duì)折,得到圖(3),然后沿圖(3)中虛線的剪去一個(gè)角,展開(kāi)得平面圖形(4),則圖(3)的虛線是()A. B. C. D.9.在下列交通標(biāo)志中,是中心對(duì)稱圖形的是()A. B.C. D.10.如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長(zhǎng)為()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.函數(shù)的定義域是________.12.方程的根是__________.13.經(jīng)過(guò)某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車先后經(jīng)過(guò)這個(gè)十字路口,則至少有一輛汽車向左轉(zhuǎn)的概率是___.14.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點(diǎn)D,聯(lián)結(jié)DC.如果AD=2,BD=6,那么△ADC的周長(zhǎng)為.15.一個(gè)扇形的面積是πcm,半徑是3cm,則此扇形的弧長(zhǎng)是_____.16.如果a是不為1的有理數(shù),我們把稱為a的差倒數(shù)如:2的差倒數(shù)是,-1的差倒數(shù)是,已知,是的差倒數(shù),是的差倒數(shù),是的差倒數(shù),…,依此類推,則___________.三、解答題(共8題,共72分)17.(8分)如圖,已知△ABC內(nèi)接于⊙O,BC交直徑AD于點(diǎn)E,過(guò)點(diǎn)C作AD的垂線交AB的延長(zhǎng)線于點(diǎn)G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數(shù);(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設(shè)△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.18.(8分)濟(jì)南國(guó)際滑雪自建成以來(lái),吸引大批滑雪愛(ài)好者,一滑雪者從山坡滑下,測(cè)得滑行距離y(單位:m)與滑行時(shí)間x(單位:s)之間的關(guān)系可以近似的用二次函數(shù)來(lái)表示.滑行時(shí)間x/s0123…滑行距離y/m041224…(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達(dá)式.現(xiàn)測(cè)量出滑雪者的出發(fā)點(diǎn)與終點(diǎn)的距離大約840m,他需要多少時(shí)間才能到達(dá)終點(diǎn)?將得到的二次函數(shù)圖象補(bǔ)充完整后,向左平移2個(gè)單位,再向下平移5個(gè)單位,求平移后的函數(shù)表達(dá)式.19.(8分)平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點(diǎn)A在反比例函數(shù)y1═(x>0)的圖象上,點(diǎn)A′與點(diǎn)A關(guān)于點(diǎn)O對(duì)稱,一次函數(shù)y2=mx+n的圖象經(jīng)過(guò)點(diǎn)A′.(1)設(shè)a=2,點(diǎn)B(4,2)在函數(shù)y1、y2的圖象上.①分別求函數(shù)y1、y2的表達(dá)式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點(diǎn)B,點(diǎn)B的橫坐標(biāo)為3a,△AA'B的面積為16,求k的值;(3)設(shè)m=,如圖②,過(guò)點(diǎn)A作AD⊥x軸,與函數(shù)y2的圖象相交于點(diǎn)D,以AD為一邊向右側(cè)作正方形ADEF,試說(shuō)明函數(shù)y2的圖象與線段EF的交點(diǎn)P一定在函數(shù)y1的圖象上.20.(8分)某校組織學(xué)生去9km外的郊區(qū)游玩,一部分學(xué)生騎自行車先走,半小時(shí)后,其他學(xué)生乘公共汽車出發(fā),結(jié)果他們同時(shí)到達(dá).己知公共汽車的速度是自行車速度的3倍,求自行車的速度和公共汽車的速度分別是多少?21.(8分)趙亮同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿的高度,如圖,他在某一時(shí)刻立1米長(zhǎng)的標(biāo)桿測(cè)得其影長(zhǎng)為1.2米,同時(shí)旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測(cè)得其長(zhǎng)度為9.6米和2米,則學(xué)校旗桿的高度為_(kāi)_______米.22.(10分)如圖,點(diǎn)P是⊙O外一點(diǎn),請(qǐng)你用尺規(guī)畫出一條直線PA,使得其與⊙O相切于點(diǎn)A,(不寫作法,保留作圖痕跡)23.(12分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點(diǎn),連接CD,過(guò)點(diǎn)A作AE⊥CD于點(diǎn)E,且交BC于點(diǎn)F,AG平分∠BAC交CD于點(diǎn)G.求證:BF=AG.24.如圖1,拋物線y=ax2+bx+4過(guò)A(2,0)、B(4,0)兩點(diǎn),交y軸于點(diǎn)C,過(guò)點(diǎn)C作x軸的平行線與拋物線上的另一個(gè)交點(diǎn)為D,連接AC、BC.點(diǎn)P是該拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m(m>4).(1)求該拋物線的表達(dá)式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過(guò)點(diǎn)A、P的直線與y軸于點(diǎn)N,過(guò)點(diǎn)P作PM⊥CD,垂足為M,直線MN與x軸交于點(diǎn)Q,試判斷四邊形ADMQ的形狀,并說(shuō)明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【點(diǎn)睛】本題考查矩形的性質(zhì)、勾股定理、三角形的面積公式等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用面積法解決有關(guān)線段問(wèn)題,屬于中考常考題型.2、B【解析】

根據(jù)勾股定理得到OA==5,根據(jù)菱形的性質(zhì)得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結(jié)論.【詳解】∵點(diǎn)A的坐標(biāo)為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點(diǎn)E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,菱形的性質(zhì),勾股定理,正確的識(shí)別圖形是解題的關(guān)鍵.3、C【解析】

根據(jù)直線的性質(zhì)公理,相交線的定義,垂線的性質(zhì),平行公理對(duì)各小題分析判斷后即可得解.【詳解】解:在同一平面內(nèi),①過(guò)兩點(diǎn)有且只有一條直線,故①正確;②兩條不相同的直線相交有且只有一個(gè)公共點(diǎn),平行沒(méi)有公共點(diǎn),故②錯(cuò)誤;③在同一平面內(nèi),經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線垂直,故③正確;④經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行,故④正確,綜上所述,正確的有①③④共3個(gè),故選C.【點(diǎn)睛】本題考查了平行公理,直線的性質(zhì),垂線的性質(zhì),以及相交線的定義,是基礎(chǔ)概念題,熟記概念是解題的關(guān)鍵.4、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對(duì)稱軸為x=﹣1.∴拋物線與y軸的交點(diǎn)為A(0,﹣3).則與A點(diǎn)以對(duì)稱軸對(duì)稱的點(diǎn)是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關(guān)于直線x=1對(duì)稱,就是要將B點(diǎn)平移后以對(duì)稱軸x=1與A點(diǎn)對(duì)稱.則B點(diǎn)平移后坐標(biāo)應(yīng)為(4,﹣3),因此將拋物線C向右平移4個(gè)單位.故選B.5、A【解析】試題分析:連接AB、OC,ABOC,所以可將四邊形AOBC分成三角形ABC、和三角形AOB,進(jìn)行求面積,求得四邊形面積是,扇形面積是S=πr2=,所以陰影部分面積是扇形面積減去四邊形面積即.故選A.6、B【解析】

由于總共有7個(gè)人,且他們的成績(jī)互不相同,第4的成績(jī)是中位數(shù),要判斷自己能否參加學(xué)校比賽,只需知道中位數(shù)即可.【詳解】由于總共有7個(gè)人,且他們的成績(jī)互不相同,第4的成績(jī)是中位數(shù),要判斷自己能否參加學(xué)校比賽,故應(yīng)知道中位數(shù)是多少.故選B.【點(diǎn)睛】本題考查了統(tǒng)計(jì)的有關(guān)知識(shí),掌握平均數(shù)、中位數(shù)、眾數(shù)、方差的意義是解題的關(guān)鍵.7、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據(jù)扇形面積公式和三角形面積公式計(jì)算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點(diǎn)睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補(bǔ)法求圖形的面積,根據(jù)圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關(guān)鍵.8、D【解析】

本題關(guān)鍵是正確分析出所剪時(shí)的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來(lái)的正方形紙片的邊平行,故剪時(shí),虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項(xiàng).【點(diǎn)睛】本題考查了平面圖形在實(shí)際生活中的應(yīng)用,有良好的空間想象能力過(guò)動(dòng)手能力是解題關(guān)鍵.9、C【解析】

解:A圖形不是中心對(duì)稱圖形;B不是中心對(duì)稱圖形;C是中心對(duì)稱圖形,也是軸對(duì)稱圖形;D是軸對(duì)稱圖形;不是中心對(duì)稱圖形故選C10、B【解析】

連接BF,由折疊可知AE垂直平分BF,根據(jù)勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì)、矩形的性質(zhì)及勾股定理的應(yīng)用,掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、x≥-1【解析】分析:根據(jù)二次根式的性質(zhì),被開(kāi)方數(shù)大于或等于0,可以求出x的范圍.詳解:根據(jù)題意得:x+1≥0,解得:x≥﹣1.故答案為x≥﹣1.點(diǎn)睛:考查了函數(shù)的定義域,函數(shù)的定義域一般從三個(gè)方面考慮:(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),定義域可取全體實(shí)數(shù);(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;(1)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開(kāi)方數(shù)非負(fù).12、1.【解析】

把無(wú)理方程轉(zhuǎn)化為整式方程即可解決問(wèn)題.【詳解】?jī)蛇吰椒降玫剑?x﹣1=1,解得:x=1,經(jīng)檢驗(yàn):x=1是原方程的解.故答案為:1.【點(diǎn)睛】本題考查了無(wú)理方程,解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,注意必須檢驗(yàn).13、.【解析】

根據(jù)題意,畫出樹(shù)狀圖,然后根據(jù)樹(shù)狀圖和概率公式求概率即可.【詳解】解:畫樹(shù)狀圖得:共有9種等可能的結(jié)果,至少有一輛汽車向左轉(zhuǎn)的有5種情況,至少有一輛汽車向左轉(zhuǎn)的概率是:.故答案為:.【點(diǎn)睛】此題考查的是求概率問(wèn)題,掌握樹(shù)狀圖的畫法和概率公式是解決此題的關(guān)鍵.14、1.【解析】試題分析:由BC的垂直平分線交AB于點(diǎn)D,可得CD=BD=6,又由等邊對(duì)等角,可求得∠BCD的度數(shù),繼而求得∠ADC的度數(shù),則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點(diǎn)D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長(zhǎng)為:AD+DC+AC=2+6+6=1.考點(diǎn):1.線段垂直平分線的性質(zhì);2.等腰三角形的判定與性質(zhì).15、【解析】

根據(jù)扇形面積公式求解即可【詳解】根據(jù)扇形面積公式.可得:,,故答案:.【點(diǎn)睛】本題主要考查了扇形的面積和弧長(zhǎng)之間的關(guān)系,利用扇形弧長(zhǎng)和半徑代入公式即可求解,正確理解公式是解題的關(guān)鍵.注意在求扇形面積時(shí),要根據(jù)條件選擇扇形面積公式.16、.【解析】

利用規(guī)定的運(yùn)算方法,分別算得a1,a2,a3,a4…找出運(yùn)算結(jié)果的循環(huán)規(guī)律,利用規(guī)律解決問(wèn)題.【詳解】∵a1=4a2=,a3=,a4=,…數(shù)列以4,?三個(gè)數(shù)依次不斷循環(huán),∵2019÷3=673,∴a2019=a3=,故答案為:.【點(diǎn)睛】此題考查規(guī)律型:數(shù)字的變化類,倒數(shù),解題關(guān)鍵在于掌握運(yùn)算法則找到規(guī)律.三、解答題(共8題,共72分)17、(1)48°(1)證明見(jiàn)解析(3)【解析】

(1)連接CD,根據(jù)圓周角定理和垂直的定義可得結(jié)論;

(1)先根據(jù)等腰三角形的性質(zhì)得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對(duì)的圓周角相等,根據(jù)同弧所對(duì)的圓周角和圓心角的關(guān)系可得結(jié)論;

(3)過(guò)O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x-a,根據(jù)勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結(jié)論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)過(guò)O作OG⊥AB于G,設(shè)CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【點(diǎn)睛】圓的綜合題,考查了三角形的面積、垂徑定理、角平分線的性質(zhì)、三角形全等的性質(zhì)和判定以及解直角三角形,解題的關(guān)鍵是:(1)根據(jù)圓周角定理找出∠ACB+∠BCD=90°;(1)根據(jù)外角的性質(zhì)和圓的性質(zhì)得:;(3)利用三角函數(shù)設(shè)未知數(shù),根據(jù)勾股定理列方程解決問(wèn)題.18、(1)20s;(2)【解析】

(1)利用待定系數(shù)法求出函數(shù)解析式,再求出y=840時(shí)x的值即可得;(2)根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】解:(1)∵該拋物線過(guò)點(diǎn)(0,0),∴設(shè)拋物線解析式為y=ax2+bx,將(1,4)、(2,12)代入,得:,解得:,所以拋物線的解析式為y=2x2+2x,當(dāng)y=840時(shí),2x2+2x=840,解得:x=20(負(fù)值舍去),即他需要20s才能到達(dá)終點(diǎn);(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2個(gè)單位,再向下平移5個(gè)單位后函數(shù)解析式為y=2(x+2+)2﹣﹣5=2(x+)2﹣.【點(diǎn)睛】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式及函數(shù)圖象平移的規(guī)律.19、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)證明見(jiàn)解析.【解析】分析:(1)由已知代入點(diǎn)坐標(biāo)即可;(2)面積問(wèn)題可以轉(zhuǎn)化為△AOB面積,用a、k表示面積問(wèn)題可解;(3)設(shè)出點(diǎn)A、A′坐標(biāo),依次表示AD、AF及點(diǎn)P坐標(biāo).詳解:(1)①由已知,點(diǎn)B(4,2)在y1═(x>0)的圖象上∴k=8∴y1=∵a=2∴點(diǎn)A坐標(biāo)為(2,4),A′坐標(biāo)為(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,,解得,∴y2=x﹣2;②當(dāng)y1>y2>0時(shí),y1=圖象在y2=x﹣2圖象上方,且兩函數(shù)圖象在x軸上方,∴由圖象得:2<x<4;(2)分別過(guò)點(diǎn)A、B作AC⊥x軸于點(diǎn)C,BD⊥x軸于點(diǎn)D,連BO,∵O為AA′中點(diǎn),S△AOB=S△AOA′=8∵點(diǎn)A、B在雙曲線上∴S△AOC=S△BOD∴S△AOB=S四邊形ACDB=8由已知點(diǎn)A、B坐標(biāo)都表示為(a,)(3a,)∴,解得k=6;(3)由已知A(a,),則A′為(﹣a,﹣).把A′代入到y(tǒng)=,得:﹣,∴n=,∴A′B解析式為y=﹣.當(dāng)x=a時(shí),點(diǎn)D縱坐標(biāo)為,∴AD=∵AD=AF,∴點(diǎn)F和點(diǎn)P橫坐標(biāo)為,∴點(diǎn)P縱坐標(biāo)為.∴點(diǎn)P在y1═(x>0)的圖象上.點(diǎn)睛:本題綜合考查反比例函數(shù)、一次函數(shù)圖象及其性質(zhì),解答過(guò)程中,涉及到了面積轉(zhuǎn)化方法、待定系數(shù)法和數(shù)形結(jié)合思想.20、自行車的速度是12km/h,公共汽車的速度是1km/h.【解析】

設(shè)自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據(jù)題意得:,解分式方程即可.【詳解】解:設(shè)自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據(jù)題意得:,解得:x=12,經(jīng)檢驗(yàn),x=12是原分式方程的解,∴3x=1.答:自行車的速度是12km/h,公共汽車的速度是1km/h.【點(diǎn)睛】本題考核知識(shí)點(diǎn):列分式方程解應(yīng)用題.解題關(guān)鍵點(diǎn):找出相等關(guān)系,列出方程.21、10【解析】試題分析:根據(jù)相似的性質(zhì)可得:1:1.2=x:9.6,則x=8,則旗桿的高度為8+2=10米.考點(diǎn):相似的應(yīng)用22、答案見(jiàn)解析【解析】

連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)K,以點(diǎn)K為圓心OK為半徑作⊙K交⊙O于點(diǎn)A,A′,作直線PA,PA′,直線PA,PA′即為所求.【詳解】解:連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)K,以點(diǎn)K為圓心OK為半徑作⊙K交⊙O于點(diǎn)A,A′,作直線PA,PA′,直線PA,PA′即為所求.【點(diǎn)睛】本題考查作圖?復(fù)雜作圖,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.23、見(jiàn)解析【解析】

根據(jù)角平分線的性質(zhì)和直角三角形性質(zhì)求∠BAF=∠ACG.進(jìn)一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關(guān)鍵.24、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見(jiàn)解析.【解析】

(1)由點(diǎn)A、B坐標(biāo)利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點(diǎn)K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點(diǎn)P的坐標(biāo)為(x,y)知x是方程x2-3x+1=-x+1的一個(gè)解.解之求得x的值即可得出答案;(3)先求出點(diǎn)D坐標(biāo)為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當(dāng)1<m<6時(shí),由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當(dāng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論