初中數(shù)學(xué)因式分解教案5篇_第1頁
初中數(shù)學(xué)因式分解教案5篇_第2頁
初中數(shù)學(xué)因式分解教案5篇_第3頁
初中數(shù)學(xué)因式分解教案5篇_第4頁
初中數(shù)學(xué)因式分解教案5篇_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第初中數(shù)學(xué)因式分解教案5篇

初中數(shù)學(xué)因式分解教案篇1

知識點:

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

教學(xué)目標(biāo):

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

考查重難點與常見題型:

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習(xí)題類型以填空題為多,也有選擇題和解答題。

教學(xué)過程:

因式分解知識點

多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

(1)提公因式法

如多項式

其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。

(2)運用公式法,即用

寫出結(jié)果。

(3)十字相乘法

對于二次項系數(shù)為l的二次三項式尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足

a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

(4)分組分解法:把各項適當(dāng)分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

(5)求根公式法:如果有兩個根X1,X2,那么

1、教學(xué)實例:學(xué)案示例

2、課堂練習(xí):學(xué)案作業(yè)

3、課堂:

4、板書:

5、課堂作業(yè):學(xué)案作業(yè)

6、教學(xué)反思:

初中數(shù)學(xué)因式分解教案篇2

教學(xué)目標(biāo)

1、知識與技能

會應(yīng)用平方差公式進行因式分解,發(fā)展學(xué)生推理能力。

2、過程與方法

經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識的完整性。

3、情感、態(tài)度與價值觀

培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實際問題中的應(yīng)用價值。

重、難點與關(guān)鍵

1、重點:利用平方差公式分解因式。

2、難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性。

3、關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來。

教學(xué)方法

采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進自己的思維。

教學(xué)過程

一、觀察探討,體驗新知

【問題牽引】

請同學(xué)們計算下列各式。

(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。

【學(xué)生活動】動筆計算出上面的兩道題,并踴躍上臺板演。

(1)(a+5)(a—5)=a2—52=a2—25;

(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。

【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律。

1、分解因式:a2—25;2、分解因式16m2—9n。

【學(xué)生活動】從逆向思維入手,很快得到下面答案:

(1)a2—25=a2—52=(a+5)(a—5)。

(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。

【教師活動】引導(dǎo)學(xué)生完成a2—b2=(a+b)(a—b)的同時,導(dǎo)出課題:用平方差公式因式分解。

平方差公式:a2—b2=(a+b)(a—b)。

評析:平方差公式中的字母a、b,教學(xué)中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式)。

二、范例學(xué)習(xí),應(yīng)用所學(xué)

【例1】把下列各式分解因式:(投影顯示或板書)

(1)x2—9y2;(2)16x4—y4;

(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;

(5)m2(16x—y)+n2(y—16x)。

【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。

【教師活動】啟發(fā)學(xué)生從平方差公式的角度進行因式分解,請5位學(xué)生上講臺板演。

【學(xué)生活動】分四人小組,合作探究。

解:(1)x2—9y2=(x+3y)(x—3y);

(2)16x4—y4=(4x2+y2)(4x2—y2)=(4x2+y2)(2x+y)(2x—y);

(3)12a2x2—27b2y2=3(4a2x2—9b2y2)=3(2ax+3by)(2ax—3by);

(4)(x+2y)2—(x—3y)2=[(x+2y)+(x—3y)][(x+2y)—(x—3y)]=5y(2x—y);

(5)m2(16x—y)+n2(y—16x)

=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。

初中數(shù)學(xué)因式分解教案篇3

教學(xué)目標(biāo)

1、知識與技能

了解因式分解的意義,以及它與整式乘法的關(guān)系。

2、過程與方法

經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用。

3、情感、態(tài)度與價值觀

在探索因式分解的方法的活動中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學(xué)知識的內(nèi)在含義與價值。

重、難點與關(guān)鍵

1、重點:了解因式分解的意義,感受其作用。

2、難點:整式乘法與因式分解之間的關(guān)系。

3、關(guān)鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解。

教學(xué)方法

采用“激趣導(dǎo)學(xué)”的教學(xué)方法。

教學(xué)過程

一、創(chuàng)設(shè)情境,激趣導(dǎo)入

【問題牽引】

請同學(xué)們探究下面的2個問題:

問題1:720能被哪些數(shù)整除談?wù)勀愕南敕ā?/p>

問題2:當(dāng)a=102,b=98時,求a2—b2的值。

二、豐富聯(lián)想,展示思維

探索:你會做下面的填空嗎

1、ma+mb+mc=()();

2、x2—4=()();

3、x2—2xy+y2=()2。

【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式。

三、小組活動,共同探究

【問題牽引】

(1)下列各式從左到右的變形是否為因式分解:

①(x+1)(x—1)=x2—1;

②a2—1+b2=(a+1)(a—1)+b2;

③7x—7=7(x—1)。

(2)在下列括號里,填上適當(dāng)?shù)捻?,使等式成立?/p>

①9x2(______)+y2=(3x+y)(_______);

②x2—4xy+(_______)=(x—_______)2。

四、隨堂練習(xí),鞏固深化

課本練習(xí)。

【探研時空】計算:993—99能被100整除嗎

五、課堂總結(jié),發(fā)展?jié)撃?/p>

由學(xué)生自己進行小結(jié),教師提出如下綱目:

1、什么叫因式分解

2、因式分解與整式運算有何區(qū)別

六、布置作業(yè),專題突破

選用補充作業(yè)。

板書設(shè)計

初中數(shù)學(xué)因式分解教案篇4

學(xué)習(xí)目標(biāo)

1、了解因式分解的意義以及它與正式乘法的關(guān)系。

2、能確定多項式各項的公因式,會用提公因式法分解因式。

學(xué)習(xí)重點:

能用提公因式法分解因式。

學(xué)習(xí)難點:

確定因式的公因式。

學(xué)習(xí)關(guān)鍵:

在確定多項式各項公因式時,應(yīng)抓住各項的公因式來提公因式。

學(xué)習(xí)過程

一.知識回顧

1、計算

(1)、n(n+1)(n-1)(2)、(a+1)(a-2)

(3)、m(a+b)(4)、2ab(x-2y+1)

二、自主學(xué)習(xí)

1、閱讀課文P72-73的內(nèi)容,并回答問題:

(1)知識點一:把一個多項式化為幾個整式的__________的形式叫做____________,也叫做把這個多項式__________。

(2)、知識點二:由m(a+b+c)=ma+mb+mc可得

ma+mb+mc=m(a+b+c)

我們來分析一下多項式ma+mb+mc的特點;它的每一項都含有一個相同的因式m,m叫做各項的_________。如果把這個_________提到括號外面,這樣

ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

2、練一練。P73練習(xí)第1題。

三、合作探究

1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、

2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解

(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

4、準(zhǔn)確地確定公因式時提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進行:

(1)確定公因式的數(shù)字因數(shù),當(dāng)各項系數(shù)都是整數(shù)時,他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

(2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項式各項都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

四、展示提升

1、填空(1)a2b-ab2=ab(________)

(2)-4a2b+8ab-4b分解因式為__________________

(3)分解因式4x2+12x3+4x=__________________

(4)__________________=-2a(a-2b+3c)

2、P73練習(xí)第2題和第3題

五、達(dá)標(biāo)測試。

1、下列各式從左到右的變形中,哪些是整式乘法哪些是因式分解哪些兩者都不是

(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

2.課本P77習(xí)題8.5第1題

學(xué)習(xí)反思

一、知識點

二、易錯題

三、你的困惑

初中數(shù)學(xué)因式分解教案篇5

(一)學(xué)習(xí)目標(biāo)

1、會用因式分解進行簡單的多項式除法

2、會用因式分解解簡單的方程

(二)學(xué)習(xí)重難點重點:因式分解在多項式除法和解方程中兩方面的應(yīng)用。

難點:應(yīng)用因式分解解方程涉及到的較多的推理過程是本節(jié)課的難點。

(三)教學(xué)過程設(shè)計

看一看

1.應(yīng)用因式分解進行多項式除法.多項式除以多項式的一般步驟:

①________________②__________

2.應(yīng)用因式分解解簡單的一元二次方程.

依據(jù)__________,一般步驟:__________

做一做

1.計算:

(1)(-a2b2+16)÷(4-ab);

(2)(18x2-12xy+2y2)÷(3x-y).

2.解下列方程:

(1)3x2+5x=0;

(2)9x2=(x-2)2;

(3)x2-x+=0.

3.完成課后練習(xí)題

想一想

你還有哪些地方不是很懂請寫出來。

____________________________________

(四)預(yù)習(xí)檢測

1.計算:

2.先請同學(xué)們思考、討論以下問題:

(1)如果AX5=0,那么A的值

(2)如果AX0=0,那么A的值

(3)如果AB=0,下列結(jié)論中哪個正確()

①A、B同時都為零,即A=0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論