2022-2023學年四川省成都市龍泉驛區(qū)中考數(shù)學押題卷含解析_第1頁
2022-2023學年四川省成都市龍泉驛區(qū)中考數(shù)學押題卷含解析_第2頁
2022-2023學年四川省成都市龍泉驛區(qū)中考數(shù)學押題卷含解析_第3頁
2022-2023學年四川省成都市龍泉驛區(qū)中考數(shù)學押題卷含解析_第4頁
2022-2023學年四川省成都市龍泉驛區(qū)中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.2.《語文課程標準》規(guī)定:7﹣9年級學生,要求學會制訂自己的閱讀計劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬字,每學年閱讀兩三部名著.那么260萬用科學記數(shù)法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×1043.反比例函數(shù)y=的圖象如圖所示,以下結論:①常數(shù)m<﹣1;②在每個象限內(nèi),y隨x的增大而增大;③若點A(﹣1,h),B(2,k)在圖象上,則h<k;④若點P(x,y)在上,則點P′(﹣x,﹣y)也在圖象.其中正確結論的個數(shù)是()A.1 B.2 C.3 D.44.計算(2017﹣π)0﹣(﹣)﹣1+tan30°的結果是()A.5 B.﹣2 C.2 D.﹣15.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算6.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°7.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA8.若關于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>59.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應值,可判斷該二次函數(shù)的圖象與軸().

…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側C.有兩個交點,且它們均在軸同側 D.無交點10.下列說法正確的是()A.負數(shù)沒有倒數(shù)B.﹣1的倒數(shù)是﹣1C.任何有理數(shù)都有倒數(shù)D.正數(shù)的倒數(shù)比自身小二、填空題(本大題共6個小題,每小題3分,共18分)11.農(nóng)科院新培育出A、B兩種新麥種,為了了解它們的發(fā)芽情況,在推廣前做了五次發(fā)芽實驗,每次隨機各自取相同種子數(shù),在相同的培育環(huán)境中分別實驗,實驗情況記錄如下:種子數(shù)量10020050010002000A出芽種子數(shù)961654919841965發(fā)芽率0.960.830.980.980.98B出芽種子數(shù)961924869771946發(fā)芽率0.960.960.970.980.97下面有三個推斷:①當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率均為0.96,所以他們發(fā)芽的概率一樣;②隨著實驗種子數(shù)量的增加,A種子出芽率在0.98附近擺動,顯示出一定的穩(wěn)定性,可以估計A種子出芽的概率是0.98;③在同樣的地質(zhì)環(huán)境下播種,A種子的出芽率可能會高于B種子.其中合理的是__________(只填序號).12.2018年貴州省公務員、人民警察、基層培養(yǎng)項目和選調(diào)生報名人數(shù)約40.2萬人,40.2萬人用科學記數(shù)法表示為_____人.13.如圖,在△PAB中,PA=PB,M、N、K分別是PA,PB,AB上的點,且AM=BK,BN=AK.若∠MKN=40°,則∠P的度數(shù)為___14.如圖,正△ABC的邊長為2,頂點B、C在半徑為的圓上,頂點A在圓內(nèi),將正△ABC繞點B逆時針旋轉,當點A第一次落在圓上時,則點C運動的路線長為(結果保留π);若A點落在圓上記做第1次旋轉,將△ABC繞點A逆時針旋轉,當點C第一次落在圓上記做第2次旋轉,再繞C將△ABC逆時針旋轉,當點B第一次落在圓上,記做第3次旋轉……,若此旋轉下去,當△ABC完成第2017次旋轉時,BC邊共回到原來位置次.15.已知點A(2,0),B(0,2),C(-1,m)在同一條直線上,則m的值為___________.16.因式分解:a3b﹣ab3=_____.三、解答題(共8題,共72分)17.(8分)某學校計劃組織全校1441名師生到相關部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?2輛A,B兩種型號客車作為交通工具.下表是租車公司提供給學校有關兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù)設學校租用A型號客車x輛,租車總費用為y元.求y與x的函數(shù)解析式,請直接寫出x的取值范圍;若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最???最省的總費用是多少?18.(8分)如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標.19.(8分)為提高市民的環(huán)保意識,倡導“節(jié)能減排,綠色出行”,某市計劃在城區(qū)投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A,B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?20.(8分)水龍頭關閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據(jù)試驗數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時間t(h)的函數(shù)關系圖象,請結合圖象解答下列問題:容器內(nèi)原有水多少?求W與t之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?圖①圖②21.(8分)化簡求值:,其中x是不等式組的整數(shù)解.22.(10分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經(jīng)了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(shù)(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數(shù)n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).①當x=90時,求出乙隊修路的天數(shù);②求y與x之間的函數(shù)關系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.23.(12分)如圖,?ABCD的邊CD為斜邊向內(nèi)作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且點E在平行四邊形內(nèi)部,連接AE、BE,求∠AEB的度數(shù).24.“母親節(jié)”前夕,某商店根據(jù)市場調(diào)查,用3000元購進第一批盒裝花,上市后很快售完,接著又用5000元購進第二批這種盒裝花.已知第二批所購花的盒數(shù)是第一批所購花盒數(shù)的2倍,且每盒花的進價比第一批的進價少5元.求第一批盒裝花每盒的進價是多少元?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

結合圓錐的平面展開圖的特征,側面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.2、C【解析】

科學記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【詳解】260萬=2600000=.故選C.【點睛】此題考查科學記數(shù)法的表示方法科學記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.3、B【解析】

根據(jù)反比例函數(shù)的圖象的位置確定其比例系數(shù)的符號,利用反比例函數(shù)的性質(zhì)進行判斷即可.【詳解】解:∵反比例函數(shù)的圖象位于一三象限,∴m>0故①錯誤;當反比例函數(shù)的圖象位于一三象限時,在每一象限內(nèi),y隨x的增大而減小,故②錯誤;將A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,∵m>0∴h<k故③正確;將P(x,y)代入y=得到m=xy,將P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上故④正確,故選:B.【點睛】本題考查了反比例函數(shù)的性質(zhì),牢記反比例函數(shù)的比例系數(shù)的符號與其圖象的關系是解決本題的關鍵.4、A【解析】試題分析:原式=1-(-3)+=1+3+1=5,故選A.5、B【解析】

有旋轉的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉的性質(zhì):旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.6、B【解析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算7、B【解析】

由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.【點睛】本題主要考查了全等三角形的判定,關鍵是掌握全等三角形的判定定理.8、B【解析】試題解析:∵關于x的一元二次方程方程有兩個不相等的實數(shù)根,∴,即,解得:k<5且k≠1.故選B.9、B【解析】

根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側故選B.【點睛】本題考查二次函數(shù)的性質(zhì),屬于基礎應用題,只需學生熟練掌握拋物線的對稱性,即可完成.10、B【解析】

根據(jù)倒數(shù)的定義解答即可.【詳解】A、只有0沒有倒數(shù),該項錯誤;B、﹣1的倒數(shù)是﹣1,該項正確;C、0沒有倒數(shù),該項錯誤;D、小于1的正分數(shù)的倒數(shù)大于1,1的倒數(shù)等于1,該項錯誤.故選B.【點睛】本題主要考查倒數(shù)的定義:兩個實數(shù)的乘積是1,則這兩個數(shù)互為倒數(shù),熟練掌握這個知識點是解答本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③【解析】分析:根據(jù)隨機事件發(fā)生的“頻率”與“概率”的關系進行分析解答即可.詳解:(1)由表中的數(shù)據(jù)可知,當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率雖然都是96%,但結合后續(xù)實驗數(shù)據(jù)可知,此時的發(fā)芽率并不穩(wěn)定,故不能確定兩種種子發(fā)芽的概率就是96%,所以①中的說法不合理;(2)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,故可以估計A種種子發(fā)芽的概率是98%,所以②中的說法是合理的;(3)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,而B種種子發(fā)芽的頻率穩(wěn)定在97%左右,故可以估計在相同條件下,A種種子發(fā)芽率大于B種種子發(fā)芽率,所以③中的說法是合理的.故答案為:②③.點睛:理解“隨機事件發(fā)生的頻率與概率之間的關系”是正確解答本題的關鍵.12、4.02×1.【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.13、100°【解析】

由條件可證明△AMK≌△BKN,再結合外角的性質(zhì)可求得∠A=∠MKN,再利用三角形內(nèi)角和可求得∠P.【詳解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案為100°【點睛】本題主要考查全等三角形的判定和性質(zhì)及三角形內(nèi)角和定理,利用條件證得△AMK≌△BKN是解題的關鍵.14、,1.【解析】

首先連接OA′、OB、OC,再求出∠C′BC的大小,進而利用弧長公式問題即可解決.因為△ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來位置,2017÷12=1.08,推出當△ABC完成第2017次旋轉時,BC邊共回到原來位置1次.【詳解】如圖,連接OA′、OB、OC.∵OB=OC=,BC=2,∴△OBC是等腰直角三角形,∴∠OBC=45°;同理可證:∠OBA′=45°,∴∠A′BC=90°;∵∠ABC=60°,∴∠A′BA=90°-60°=30°,∴∠C′BC=∠A′BA=30°,∴當點A第一次落在圓上時,則點C運動的路線長為:.∵△ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來位置,2017÷12=1.08,∴當△ABC完成第2017次旋轉時,BC邊共回到原來位置1次,故答案為:,1.【點睛】本題考查軌跡、等邊三角形的性質(zhì)、旋轉變換、規(guī)律問題等知識,解題的關鍵是循環(huán)利用數(shù)形結合的思想解決問題,循環(huán)從特殊到一般的探究方法,所以中考填空題中的壓軸題.15、3【解析】設過點A(2,0)和點B(0,2)的直線的解析式為:,則,解得:,∴直線AB的解析式為:,∵點C(-1,m)在直線AB上,∴,即.故答案為3.點睛:在平面直角坐標系中,已知三點共線和其中兩點的坐標,求第3點坐標中待定字母的值時,通常先由已知兩點的坐標求出過這兩點的直線的解析式,在將第3點的坐標代入所求解析式中,即可求得待定字母的值.16、ab(a+b)(a﹣b)【解析】

先提取公因式ab,然后再利用平方差公式分解即可.【詳解】a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b),故答案為ab(a+b)(a﹣b).【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.分解因式的步驟一般為:一提(公因式),二套(公式),三徹底.三、解答題(共8題,共72分)17、(1)21≤x≤62且x為整數(shù);(2)共有25種租車方案,當租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【解析】

(1)根據(jù)租車總費用=A、B兩種車的費用之和,列出函數(shù)關系式,再根據(jù)AB兩種車至少要能坐1441人即可得取x的取值范圍;(2)由總費用不超過21940元可得關于x的不等式,解不等式后再利用函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x為整數(shù);(2)由題意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x為整數(shù),∴共有25種租車方案,∵k=100>0,∴y隨x的增大而增大,當x=21時,y有最小值,y最?。?00×21+17360=19460,故共有25種租車方案,當租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【點睛】本題考查了一次函數(shù)的應用、一元一次不等式的應用等,解題的關鍵是理解題意,正確列出函數(shù)關系式,會利用函數(shù)的性質(zhì)解決最值問題.18、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】

(1)將A(-1,0),B(0,1),C(1,0)三點的坐標代入y=ax2+bx+c,運用待定系數(shù)法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長越大,再運用待定系數(shù)法求出直線AB的解析式為y=x+1,則可設P點的坐標為(x,-x2-2x+1),E點的坐標為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據(jù)二次函數(shù)的性質(zhì)可知當x=-時,PE最大,△PDE的周長也最大.將x=-代入-x2-2x+1,進而得到P點的坐標.【詳解】解:(1)∵拋物線y=ax2+bx+c經(jīng)過點A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長越大.設直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設P點的坐標為(x,﹣x2﹣2x+1),E點的坐標為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當x=﹣時,PE最大,△PDE的周長也最大.當x=﹣時,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點P坐標為(﹣,)時,△PDE的周長最大.【點睛】本題是二次函數(shù)的綜合題型,其中涉及到的知識點有運用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,等腰直角三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),三角形的周長,綜合性較強,難度適中.19、(1)本次試點投放的A型車60輛、B型車40輛;(2)3輛;2輛【解析】分析:(1)設本次試點投放的A型車x輛、B型車y輛,根據(jù)“兩種款型的單車共100輛,總價值36800元”列方程組求解可得;(2)由(1)知A、B型車輛的數(shù)量比為3:2,據(jù)此設整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)“投資總價值不低于184萬元”列出關于a的不等式,解之求得a的范圍,進一步求解可得.詳解:(1)設本次試點投放的A型車x輛、B型車y輛,根據(jù)題意,得:,解得:,答:本次試點投放的A型車60輛、B型車40輛;(2)由(1)知A、B型車輛的數(shù)量比為3:2,設整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)題意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整個城區(qū)全面鋪開時投放的A型車至少3000輛、B型車至少2000輛,則城區(qū)10萬人口平均每100人至少享有A型車3000×=3輛、至少享有B型車2000×=2輛.點睛:本題主要考查二元一次方程組和一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的相等(或不等)關系,并據(jù)此列出方程組.20、(1)0.3L;(2)在這種滴水狀態(tài)下一天的滴水量為9.6L.【解析】

(1)根據(jù)點的實際意義可得;(2)設與之間的函數(shù)關系式為,待定系數(shù)法求解可得,計算出時的值,再減去容器內(nèi)原有的水量即可.【詳解】(1)由圖象可知,容器內(nèi)原有水0.3L.(2)由圖象可知W與t之間的函數(shù)圖象經(jīng)過點(0,0.3),故設函數(shù)關系式為W=kt+0.3.又因為函數(shù)圖象經(jīng)過點(1.5,0.9),代入函數(shù)關系式,得1.5k+0.3=0.9,解得k=0.4.故W與t之間的函數(shù)關系式為W=0.4t+0.3.當t=24時,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在這種滴水狀態(tài)下一天的滴水量為9.6L.【點睛】本題考查了一次函數(shù)的應用,關鍵是利用待定系數(shù)法正確求出一次函數(shù)的解析式.21、當x=﹣3時,原式=﹣,當x=﹣2時,原式=﹣1.【解析】

先化簡分式,再解不等式組求得x的取值范圍,在此范圍內(nèi)找到符合分式有意義的x的整數(shù)值,代入計算可得.【詳解】原式=÷=?=,解不等式組,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式組的解集為﹣4<x≤﹣1,∴不等式的整數(shù)解是﹣3,﹣2,﹣1.又∵x+1≠0,x﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,當x=﹣3時,原式=﹣,當x=﹣2時,原式=﹣1.【點睛】本題考查了分式的化簡求值及一元一次不等式組的整數(shù)解,求分式的值時,一定要選擇使每個分式都有意義的未知數(shù)的值.22、(1)35,50;(2)①12;②y=﹣x+;③150米.【解析】

(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論