




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FailurePropertiesofFracturedRockMassesasAnisotropic
HomogenizedMediaIntroductionItiscommonlyacknowledgedthatrockmassesalwaysdisplaydiscontinuoussurfacesofvarioussizesandorientations,usuallyreferredtoasfracturesorjoints.Sincethelatterhavemuchpoorermechanicalcharacteristicsthantherockmaterial,theyplayadecisiveroleintheoverallbehaviorofrockstructures,whosedeformationaswellasfailurepatternsaremainlygovernedbythoseofthejoints.Itfollowsthat,fromageomechanicalengineeringstandpoint,designmethodsofstructuresinvolvingjointedrockmasses,mustabsolutelyaccountforsuch''weakness''surfacesintheiranalysis.Themoststraightforwardwayofdealingwiththissituationistotreatthejointedrockmassasanassemblageofpiecesofintactrockmaterialinmutualinteractionthroughtheseparatingjointinterfaces.Manydesign-orientedmethodsrelatingtothiskindofapproachhavebeendevelopedinthepastdecades,amongthem,thewell-known''blocktheory,''whichattemptstoidentifypotei-tiallyunstablelumpsofrockfromgeometricalandkinematicalconsiderations(GoodmanandShi1985;Warburton1987;Goodman1995).Oneshouldalsoquotethewidelyuseddistinctelementmethod,originatingfromtheworksofCundallandcoauthors(CundallandStrack1979;Cundall1988),whichmakesuseofanexplicitfinite-differencenumericalschemeforcomputingthedisplacementsoftheblocksconsideredasrigidordeformablebodies.Inthiscontext,attentionisprimarilyfocusedontheformulationofrealisticmodelsfordescribingthejointbehavior.Sincethepreviouslymentioneddirectapproachisbecominghighlycomplex,andthennumericallyuntractable,assoonasaverylargenumberofblocksisinvolved,itseemsadvisabletolookforalternativemethodssuchasthosederivedfromtheconceptofhomogenization.Actually,suchaconceptisalreadypartiallyconveyedinanempiricalfashionbythefamousHoekandBrown'scriterion(HoekandBrown1980;Hoek1983).Itstemsfromtheintuitiveideathatfromamacroscopicpointofview,arockmassintersectedbyaregularnetworkofjointsurfaces,maybeperceivedasahomogeneouscontinuum.Furthermore,owingtotheexistenceofjointpreferentialorientations,oneshouldexpectsuchahomogenizedmaterialtoexhibitanisotropicproperties.Theobjectiveofthepresentpaperistoderivearigorousformulationforthefailurecriterionofajointedrockmassasahomogenizedmedium,fromtheknowledgeofthejointsandrockmaterialrespectivecriteria.Intheparticularsituationwheretwomutuallyorthogonaljointsetsareconsidered,aclosed-formexpressionisobtained,givingclearevidenceoftherelatedstrengthanisotropy.Acomparisonisperformedonanillustrativeexamplebetweentheresultsproducedbythehomogenizationmethod,makinguseofthepreviouslydeterminedcriterion,andthoseobtainedbymeansofacomputercodebasedonthedistinctelementmethod.Itisshownthat,whilebothmethodsleadtoalmostidenticalresultsforadenselyfracturedrockmass,a''size''or''scaleeffect''isobservedinthecaseofalimitednumberofjoints.Thesecondpartofthepaperisthendevotedtoproposingamethodwhichattemptstocapturesuchascaleeffect,whilestilltakingadvantageofahomogenizationtechnique.ThisisachievedbyresortingtoamicropolarorCosseratcontinuumdescriptionofthefracturedrockmass,throughthederivationofageneralizedmacroscopicfailureconditionexpressedintermsofstressesandcouplestresses.Theimplementationofthismodelisfinallyillustratedonasimpleexample,showinghowitmayactuallyaccountforsuchascaleeffect.ProblemStatementandPrincipleofHomogenizationApproachTheproblemunderconsiderationisthatofafoundation(bridgepierorabutment)restinguponafracturedbedrock(Fig.1),whosebearingFig.1.Bearingcapacityoffbiindationonfracturedrockmasscapacityneedstobeevaluatedfromtheknowledgeofthestrengthcapacitiesoftherockmatrixandthejointinterfaces.ThefailureconditionoftheformerwillbeexpressedthroughtheclassicalMohr-CoulombconditionexpressedbymeansofthecohesionCandthefrictionangle.Notethattensilestresseswillbecountedpositivethroughoutthepaper.Likewise,thejointswillbemodeledasplaneinterfaces(representedbylinesinthefigure'splane).Theirstrengthpropertiesaredescribedbymeansofaconditioninvolvingthestressvectorofcomponents(o,t)actingatanypointofthoseinterfacesFjo,t=t+gtan%.—G.<0(1)Accordingtotheyielddesign(orlimitanalysis)reasoning,theabovestructurewillremainsafeunderagivenverticalloadQ(forceperunitlengthalongtheOzaxis),ifonecanexhibitthroughouttherockmassastressdistributionwhichsatisfiestheequilibriumequationsalongwiththestressboundaryconditions,whilecomplyingwiththestrengthrequirementexpressedatanypointofthestructure.ThisproblemamountstoevaluatingtheultimateloadQ+beyondwhichfailurewilloccur,orequivalentlywithinwhichitsstabilityisensured.Duetothestrongheterogeneityofthejointedrockmass,insurmountabledifcultiesarelikelytoarisewhentryingtoimplementtheabovereasoningdirectly.Asregards,forinstance,thecasewherethestrengthpropertiesofthejointsareconsiderablylowerthanthoseoftherockmatrix,theimplementationofakinematicapproachwouldrequiretheuseoffailuremechanismsinvolvingvelocityjumpsacrossthejoints,sincethelatterwouldconstitutepreferentialzonesfortheoccurrenceoffailure.Indeed,suchadirectapproachwhichisappliedinmostclassicaldesignmethods,isbecomingrapidlycomplexasthedensityofjointsincreases,thatisasthetypicaljointspacinglisbecomingsmallincomparisonwithacharacteristiclengthofthestructuresuchasthefoundationwidthB.Insuchasituation,theuseofanalternativeapproachbasedontheideaofhomogenizationandrelatedconceptofmacroscopicequivalentcontinuumforthejointedrockmass,maybeappropriatefordealingwithsuchaproblem.Moredetailsaboutthistheory,appliedinthecontextofreinforcedsoilandrockmechanics,willbefoundin(deBuhanetal.1989;deBuhanandSalenc,on1990;Bernaudetal.1995).MacroscopicFailureConditionforJointedRockMassTheformulationofthemacroscopicfailureconditionofajointedrockmassmaybeobtainedfromthesolutionofanauxiliaryyielddesignboundary-valueproblemattachedtoaunitrepresentativecellofjointedrock(BekaertandMaghous1996;Maghousetal.1998).Itwillnowbeexplicitlyformulatedintheparticularsituationoftwomutuallyorthogonalsetsofjointsunderplanestrainconditions.ReferringtoanorthonormalframeO&&whoseaxesareplacedalongthejointsdirections,andintroducingthefollowingchangeofstressvariables:TOC\o"1-5"\h\zP偵11十小")上2§=(仃隊(duì)―心"人2⑵suchamacroscopicfailureconditionsimplybecomes'山?十戶<(-Q十\21I*in以因)\o"CurrentDocument"PWggE(-^點(diǎn)勺加旺響whereitwillbeassumedthat〃陽=匚礦而褊叫=q也叫廣Aconvenientrepresentationofthemacroscopiccriterionistodrawthestrengthenveloperelatingtoanorientedfacetofthehomogenizedmaterial,whoseunitnormalnIisinclinedbyanangleawithrespecttothejointdirection.Denotingbycandtthenormalandshearcomponentsofthestressvectoractinguponsuchafacet,itis
possibletodetermineforanyvalueofathesetofadmissiblestresses(cnnFig.2.Strengthenvelopeattachedtofacetofhomogenizedmaterial"("tan啊/#J"Jdeducedfromconditions(3)expressedpossibletodetermineforanyvalueofathesetofadmissiblestresses(cFig.2.Strengthenvelopeattachedtofacetofhomogenizedmaterial"("tan啊/#J"JTwocommentsareworthbeingmade:ThedecreaseinstrengthofarockmaterialduetothepresenceofjointsisclearlyillustratedbyFig.2.Theusualstrengthenvelopecorrespondingtotherockmatrixfailureconditionis''truncated''bytwoorthogonalsemilinesassoonasconditionH,<Hisfulfilled.Themacroscopicanisotropyisalsoquiteapparent,sinceforinstancethestrengthenvelopedrawninFig.2isdependentonthefacetorientationa.Theusualnotionofintrinsiccurveshouldthereforebediscarded,butalsotheconceptsofanisotropiccohesionandfrictionangleastentativelyintroducedbyJaeger(I960),orMcLamoreandGray(1967).NorcansuchananisotropybeproperlydescribedbymeansofcriteriabasedonanextensionoftheclassicalMohr-Coulombconditionusingtheconceptofanisotropytensor(BoehlerandSawczuk1977;Nova1980;AllirotandBochler1981).ApplicationtoStabilityofJointedRockExcavationTheclosed-formexpression(3)obtainedforthemacroscopicfailurecondition,makesitthenpossibletoperformthefailuredesignofanystructurebuiltinsuchamaterial,suchastheexcavationshowninFig.3,
Fig.3.Stabilityanalysisofjointedrockexcavationwherehandpdenotetheexcavationheightandtheslopeangle,respectively.Sincenosurchargeisappliedtothestructure,thespecificweightyoftheconstituentmaterialwillobviouslyconstitutethesoleloadingparameterofthesystem.Assessingthestabilityofthisstructurewillamounttoevaluatingthemaximumpossibleheighth+beyondwhichfailurewilloccur.Astandarddimensionalanalysisofthisproblemshowsthatthiscriticalheightmaybeputintheform布一二?”"*"而押J(4)where0=jointorientationandK+=nondimensionalfactorgoverningthestabilityoftheexcavation.Upper-boundestimatesofthisfactorwillnowbedeterminedbymeansoftheyielddesignkinematicapproach,usingtwokindsoffailuremechanismsshowninFig.4.Fia.4.FailuremechanismsusedinkinematicannroachRotationalFailureMechanism[Fig.4(a)]Thefirstclassoffailuremechanismsconsideredintheanalysisisadirecttranspositionofthoseusuallyemployedforhomogeneousandisotropicsoilorrockslopes.InsuchamechanismavolumeofhomogenizedjointedrockmassisrotatingaboutapointQwithanangularvelocityro.Thecurveseparatingthisvolumefromtherestofthestructurewhichiskeptmotionlessisavelocityjumpline.SinceitisanarcofthelogspiralofangleandfocusQthevelocitydiscontinuityatanypointofthislineisinclinedatanglewmwithrespecttothetangentatthesamepoint.Theworkdonebytheexternalforcesandthemaximumresistingworkdevelopedinsuchamechanismmaybewrittenas(seeChenandLiu1990;Maghousetal.1998)川L=層四i巾2)附在"nJ倒;,私押了部;卬】:蛀|⑴wherewandw=dimensionlessfunctions,and四]and^2=anglesspecifyingthepositionofthecenterofrotationQ.Sincethekinematicapproachofyielddesignstatesthatanecessaryconditionforthestructuretobestablewrites(6)itfollowsfromEqs.(5)and(6)thatthebestupper-boundestimatederivedfromthisfirstclassofmechanismisobtainedbyminimizationwithrespectto四1and^2K-WK件minim](7)whichmaybedeterminednumerically.PiecewiseRigid-BlockFailureMechanism[Fig.4(b)]Thesecondclassoffailuremechanismsinvolvestwotranslatingblocksofhomogenizedmaterial.Itisdefinedbyfiveangularparameters.Inordertoavoidanymisinterpretation,itshouldbespecifiedthattheterminologyofblockdoesnotreferheretothelumpsofrockmatrixintheinitialstructure,butmerelymeansthat,intheframeworkoftheyielddesignkinematicapproach,awedgeofhomogenizedjointedrockmassisgivena(virtual)rigid-bodymotion.Theimplementationoftheupper-boundkinematicapproach,makinguseofofthissecondclassoffailuremechanism,leadstothefollowingresults.嘰=U\玷心…;3皿)呼皿=。?;靺n思…;孔皿)(8)whereUrepresentsthenormofthevelocityofthelowerblock.Hence,thefollowingupper-boundestimateforK+:K-W理=min|不當(dāng)⑼ResultsandComparisonwithDirectCalculationTheoptimalboundhasbeencomputednumericallyforthefollowingsetofparameters:9=75。,0=10°,=0.1,鈿=35。,孔=20?!?wKu=min{K:,K;}=1.47Theresultobtainedfromthehomogenizationapproachcanthenbecomparedwiththatderivedfromadirectcalculation,usingtheUDECcomputersoftware(Hartetal.1988).Sincethelattercanhandlesituationswherethepositionofeachindividualjointisspecified,aseriesofcalculationshasbeenperformedvaryingthenumbernofregularlyspacedjoints,inclinedatthesameangle0=10°withthehorizontal,andintersectingthefacingoftheexcavation,assketchedinFig.5.TheFig.5,Estimatesforsrabiiityfactor:homogenizationversusdirectapproachcorrespondingestimatesofthestabilityfactorhavebeenplottedagainstninthesamefigure.Itcanbeobservedthatthesenumericalestimatesdecreasewiththenumberofintersectingjointsdowntotheestimateproducedbythehomogenizationapproach.Theobserveddiscrepancybetweenhomogenizationanddirectapproaches,couldberegardedasa''size''or''scaleeffect''whichisnotincludedintheclassicalhomogenizationmodel.Apossiblewaytoovercomesuchalimitationofthelatter,whilestilltakingadvantageofthehomogenizationconceptasacomputationaltime-savingalternativefordesignpurposes,couldbetoresorttoadescriptionofthefracturedrockmediumasaCosseratormicropolarcontinuum,asadvocatedforinstancebyBiot(1967);Besdo(1985);AdhikaryandDyskin(1997);andSulemandMulhaus(1997)forstratiedorblockstructures.Thesecondpartofthispaperisdevotedtoapplyingsuchamodeltodescribingthefailurepropertiesofjointedrockmedia.均質(zhì)各向異性裂隙巖體的破壞特性概述由于巖體表面的裂隙或節(jié)理大小與傾向不同,人們通常把巖體看做是非連續(xù)的。盡管裂隙或節(jié)理表現(xiàn)出的力學(xué)性質(zhì)要遠(yuǎn)遠(yuǎn)低于巖體本身,但是它們?cè)趲r體結(jié)構(gòu)性質(zhì)方面起著重要的作用,巖體本身的變形和破壞模式也主要是由這些節(jié)理所決定的。從地質(zhì)力學(xué)工程角度而言,在涉及到節(jié)理巖體結(jié)構(gòu)的設(shè)計(jì)方法中,軟弱表面是一個(gè)很重要的考慮因素。解決這種問題最簡(jiǎn)單的方法就是把巖體看作是許多完整巖塊的集合,這些巖塊之間有很多相交的節(jié)理面。這種方法在過去的幾十年中被設(shè)計(jì)者們廣泛采用,其中比較著名的是“塊體理論”,該理論試圖從幾何學(xué)和運(yùn)動(dòng)學(xué)的角度用來判別潛在的不穩(wěn)定巖塊(Goodman&石根華1985;Warburton1987;Goodman1995);另外一種廣泛使用的方法是特殊單元法,它是由Cundall及其合作者(Cundall&Strack1979;Cundall1988)提出來的,其目的是用來求解顯式有限差分?jǐn)?shù)值問題,計(jì)算剛性塊體或柔性塊體的位移。本文的重點(diǎn)是闡述如何利用公式來描述實(shí)際的節(jié)理模型。既然直接求解的方法很復(fù)雜,數(shù)值分析方法也很難駕馭,同時(shí)由于涉及到了數(shù)目如此之多的塊體,所以尋求利用均質(zhì)化的方法是一個(gè)明智的選擇。事實(shí)上,這個(gè)概念早在Hoek-Brown準(zhǔn)則(Hoek&Brown1980;Hoek1983)得出的一個(gè)經(jīng)驗(yàn)公式中就有所涉及,它來自于宏觀上的一個(gè)直覺,被一個(gè)規(guī)則的表面節(jié)理網(wǎng)絡(luò)所分割的巖體,可以看做是一個(gè)均質(zhì)的連續(xù)體,由于節(jié)理傾向的不同,這樣的一個(gè)均質(zhì)材料顯示出了各向異性的性質(zhì)。本文的目的就是:從節(jié)理和巖體各自準(zhǔn)則出發(fā),推求出一個(gè)嚴(yán)格準(zhǔn)確的公式,來描述作為均勻介質(zhì)的節(jié)理巖體的破壞準(zhǔn)則。先考查特殊情況,從兩組相互正交的節(jié)理著手,得到一個(gè)封閉的表達(dá)式,清楚的證明了強(qiáng)度的各向異性。我們進(jìn)行了一項(xiàng)試驗(yàn):把利用均質(zhì)化方法得到的結(jié)果和以前普遍使用的準(zhǔn)則得到的結(jié)果以及基于計(jì)算機(jī)編程的特殊單元法(DEM)得到的結(jié)果進(jìn)行了對(duì)比,結(jié)果表明:對(duì)于密集裂隙的巖體,結(jié)果基本一致;對(duì)于節(jié)理數(shù)目較少的巖體,存在一個(gè)尺寸效應(yīng)(或者稱為比例效應(yīng))。本文的第二部分就是在保證均質(zhì)化方法優(yōu)點(diǎn)的前提下,致力于提出一個(gè)新的方法來解決這種尺寸效應(yīng),基于應(yīng)力和應(yīng)力耦合的宏觀破壞條件,提出利用微極模型或者Cosserat連續(xù)模型來描述節(jié)理巖體;最后將會(huì)
用一個(gè)簡(jiǎn)單的例子來演示如何應(yīng)用這個(gè)模型來解決比例效應(yīng)的問題。問題的陳述和均質(zhì)化方法的原理考慮這樣一個(gè)問題:一個(gè)基礎(chǔ)(橋墩或者其鄰接處)建立在一個(gè)有裂隙的巖床上(Fig.1),巖床的承載能力通過巖基和節(jié)理交界面的強(qiáng)度Fig.1,裂隙巖體基礎(chǔ)的承載能力估算出來。巖基的破壞條件使用傳統(tǒng)的莫爾-庫(kù)倫條件,可以用粘聚力C1和內(nèi)摩擦角?來表示(本文中張應(yīng)力采用正值計(jì)算)。同樣,用接觸平面代替節(jié)理(圖示平面中用直線表示)。強(qiáng)度特性采用接觸面上任意點(diǎn)的應(yīng)力向量(。其)表示:日(\丁尸)=|t|+otanipy—C/^0(1)根據(jù)屈服設(shè)計(jì)(或極限分析)推斷,如果沿著應(yīng)力邊界條件,巖體應(yīng)力分布滿足平衡方程和結(jié)構(gòu)任意點(diǎn)的強(qiáng)度要求,那么在一個(gè)給定的豎向荷載Q(沿著OZ軸方向)作用下,上部結(jié)構(gòu)仍然安全。這個(gè)問題可以歸結(jié)為求解破壞發(fā)生處的極限承載力Q+,或者是多大外力作用下結(jié)構(gòu)能確保穩(wěn)定。由于節(jié)理巖體強(qiáng)度的各向異性,若試圖使用上述直接推求的方法,難度就會(huì)增大很多。比如,由于節(jié)理強(qiáng)度特性遠(yuǎn)遠(yuǎn)低于巖基,從運(yùn)動(dòng)學(xué)角度出發(fā)的方法要求考慮到破壞機(jī)理,這就牽涉到了節(jié)理上的速度突躍,而節(jié)理處將會(huì)是首先發(fā)生破壞的區(qū)域。這種應(yīng)用在大多數(shù)傳統(tǒng)設(shè)計(jì)中的直接方法,隨著節(jié)理密度的增加越來越復(fù)雜。確切地說,這是因?yàn)橄啾容^結(jié)構(gòu)的長(zhǎng)度(如基礎(chǔ)寬B)而言,典型節(jié)理間距L變得更小,加大了問題的難度。在這種情況下,對(duì)節(jié)理巖體使用均質(zhì)化方法和宏觀等效連續(xù)的相關(guān)概念來處理可能就會(huì)比較妥當(dāng)。關(guān)于這個(gè)理論的更多細(xì)節(jié),在有關(guān)于加固巖土力學(xué)的文章中可以查到(deBuhan等1989;deBuhan&Salenc1990;Bernaud等1995)。節(jié)理巖體的宏觀破壞條件節(jié)理巖體的宏觀破壞條件公式可以從對(duì)節(jié)理巖體典型晶胞單元的輔助屈服設(shè)計(jì)邊值問題中得到(Bekaert&Maghous1996;Maghous等1998)?,F(xiàn)在可以精確地表示平面應(yīng)變條件下,兩組相互正交節(jié)理的特殊情況,建立沿節(jié)理方向的正交坐標(biāo)系o§&2,并引入下列應(yīng)力變量:TOC\o"1-5"\h\zP偵11十小")上2§=(仃M一心"人2⑵宏觀破壞條件可簡(jiǎn)化為:Q十血血甲m5「pr邊士加f(抽)其中,假定宏觀準(zhǔn)則的一種簡(jiǎn)便表示方法是畫出均質(zhì)材料傾向面上的強(qiáng)度包絡(luò)線,其單位法線n的傾角a為節(jié)理的方向,分別用氣和Tn表示這個(gè)面上的正應(yīng)力和切應(yīng)力,用(a『a22,aJ表示條件(3),推求出一組許可應(yīng)力(氣氣),然后求解出傾角a。當(dāng)a>*m時(shí),相應(yīng)的區(qū)域表示如圖2所示,并對(duì)此做出兩個(gè)注解如下:
Fir.2.均勻介質(zhì)平回日勺強(qiáng)茂包絡(luò)技從圖2中可以清楚的看出,節(jié)理的存在導(dǎo)致了巖體強(qiáng)度的降低。通常當(dāng)HHm時(shí),強(qiáng)度包絡(luò)線和巖基破壞條件相一致,其前半部分被兩個(gè)正交的半條線切去。宏觀各向異性很顯著。比如,圖2中的強(qiáng)度包絡(luò)線決定于方位角a。應(yīng)該拋棄固有曲線和各向異性粘聚力與摩擦角的概念,其中后一個(gè)概念是由Jaeger(I960)或McLamore&Gray(1967)所引入的。通過莫爾-庫(kù)倫條件進(jìn)行擴(kuò)展
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貝類毒素的毒性機(jī)制與分布-深度研究
- 2025年賽事活動(dòng)布置合同
- 緩存擴(kuò)展性研究-深度研究
- 2025年租房合同解除協(xié)議樣本
- 2025年柑橘園經(jīng)營(yíng)承包合同書
- 軟骨細(xì)胞凋亡與炎癥反應(yīng)-深度研究
- 2025年住宅銷售與地產(chǎn)流通合同
- 2025年糕點(diǎn)類產(chǎn)品采購(gòu)合同
- 2025年新版電動(dòng)輕便摩托車租賃合同格式
- 2025年保溫砂漿供應(yīng)合同范例
- 初中英語翻譯專題訓(xùn)練100題含答案
- 社區(qū)舞蹈隊(duì)章程
- YYT 1898-2024 血管內(nèi)導(dǎo)管導(dǎo)絲 親水性涂層牢固度試驗(yàn)方法
- 2024年通信安全員ABC證試題及解析(1000題)
- 世界反法西斯戰(zhàn)爭(zhēng)的勝利(課件)
- 住宅鋼筋和混凝土用量限額設(shè)計(jì)參考指標(biāo)(2021年)
- 中國(guó)慢性鼻竇炎診斷和治療指南課件
- 基坑開挖影響周邊環(huán)境與建筑物研究
- 《民事訴訟法》課件
- 古老的聲音第1學(xué)時(shí)課件-2023-2024學(xué)年高中音樂粵教花城版(2019)必修音樂鑒賞
- 錦繡金華完整版本
評(píng)論
0/150
提交評(píng)論