2023屆山東省棗莊市名校中考數(shù)學最后一模試卷含解析_第1頁
2023屆山東省棗莊市名校中考數(shù)學最后一模試卷含解析_第2頁
2023屆山東省棗莊市名校中考數(shù)學最后一模試卷含解析_第3頁
2023屆山東省棗莊市名校中考數(shù)學最后一模試卷含解析_第4頁
2023屆山東省棗莊市名校中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知一個多邊形的內(nèi)角和是1080°,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形2.一個關于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥33.實數(shù)在數(shù)軸上的點的位置如圖所示,則下列不等關系正確的是()A.a(chǎn)+b>0 B.a(chǎn)-b<0 C.<0 D.>4.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.5.為了盡早適應中考體育項目,小麗同學加強跳繩訓練,并把某周的練習情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個6.一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數(shù)y2=2x+3(﹣1<x<2)的圖象記作G2,對于這兩個圖象,有以下幾種說法:①當G1與G2有公共點時,y1隨x增大而減??;②當G1與G2沒有公共點時,y1隨x增大而增大;③當k=2時,G1與G2平行,且平行線之間的距離為65下列選項中,描述準確的是()A.①②正確,③錯誤 B.①③正確,②錯誤C.②③正確,①錯誤 D.①②③都正確7.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數(shù)據(jù)35578用科學記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1058.已知二次函數(shù)y=﹣(x﹣h)2+1(為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對應的函數(shù)值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+9.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.10.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°11.如圖,由四個正方體組成的幾何體的左視圖是()A. B. C. D.12.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,OD⊥AB于點E,交⊙O于點D,則∠BAD=_______°.14.如果,那么代數(shù)式的值是______.15.據(jù)國家旅游局數(shù)據(jù)中心綜合測算,2018年春節(jié)全國共接待游客3.86億人次,將“3.86億”用科學計數(shù)法表示,可記為____________.16.如圖,P為正方形ABCD內(nèi)一點,PA:PB:PC=1:2:3,則∠APB=_____________.17.如圖,某數(shù)學興趣小組將邊長為4的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形DAB的面積為__________.18.不透明袋子中裝有5個紅色球和3個藍色球,這些球除了顏色外沒有其他差別.從袋子中隨機摸出一個球,摸出藍色球的概率為_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如果a2+2a-1=0,求代數(shù)式的值.20.(6分)已知拋物線y=x2+bx+c經(jīng)過點A(0,6),點B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經(jīng)過拋物線y=x2+bx+c的頂點P,且l1與l2相交于點C,直線l2與x軸、y軸分別交于點D、E.若把拋物線上下平移,使拋物線的頂點在直線l2上(此時拋物線的頂點記為M),再把拋物線左右平移,使拋物線的頂點在直線l1上(此時拋物線的頂點記為N).(1)求拋物y=x2+bx+c線的解析式.(2)判斷以點N為圓心,半徑長為4的圓與直線l2的位置關系,并說明理由.(3)設點F、H在直線l1上(點H在點F的下方),當△MHF與△OAB相似時,求點F、H的坐標(直接寫出結果).21.(6分)某跳水隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:本次接受調(diào)查的跳水運動員人數(shù)為,圖①中m的值為;求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).22.(8分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是度;(2)補全條形統(tǒng)計圖;(3)所抽取學生的足球運球測試成績的中位數(shù)會落在等級;(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?23.(8分)如圖,在中,,且,,為的中點,于點,連結,.(1)求證:;(2)當為何值時,的值最大?并求此時的值.24.(10分)兩家超市同時采取通過搖獎返現(xiàn)金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進行了統(tǒng)計并制成了圖表(如圖)獎金金額獲獎人數(shù)20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)是;(2)請你補全統(tǒng)計圖1;(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?(4)圖2是甲超市的搖獎轉(zhuǎn)盤,黃區(qū)20元、紅區(qū)15元、藍區(qū)10元、白區(qū)5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?25.(10分)霧霾天氣嚴重影響市民的生活質(zhì)量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調(diào)查了所在城市部分市民,并對調(diào)查結果進行了整理,繪制了下圖所示的不完整的統(tǒng)計圖表:組別霧霾天氣的主要成因百分比A工業(yè)污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據(jù)統(tǒng)計圖表回答下列問題:本次被調(diào)查的市民共有多少人?并求和的值;請補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中扇形區(qū)域所對應的圓心角的度數(shù);若該市有100萬人口,請估計市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù).26.(12分)如圖,M是平行四邊形ABCD的對角線上的一點,射線AM與BC交于點F,與DC的延長線交于點H.(1)求證:AM2=MF.MH(2)若BC2=BD.DM,求證:∠AMB=∠ADC.27.(12分)計算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)多邊形的內(nèi)角和=(n﹣2)?180°,列方程可求解.【詳解】設所求多邊形邊數(shù)為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【點睛】本題考查根據(jù)多邊形的內(nèi)角和計算公式求多邊形的邊數(shù),解答時要會根據(jù)公式進行正確運算、變形和數(shù)據(jù)處理.2、C【解析】試題解析:一個關于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點:在數(shù)軸上表示不等式的解集.3、C【解析】

根據(jù)點在數(shù)軸上的位置,可得a,b的關系,根據(jù)有理數(shù)的運算,可得答案.【詳解】解:由數(shù)軸,得b<-1,0<a<1.A、a+b<0,故A錯誤;B、a-b>0,故B錯誤;C、<0,故C符合題意;D、a2<1<b2,故D錯誤;故選C.【點睛】本題考查了實數(shù)與數(shù)軸,利用點在數(shù)軸上的位置得出b<-1,0<a<1是解題關鍵,又利用了有理數(shù)的運算.4、C【解析】

混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【詳解】設瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【點睛】本題主要考查分式的混合運算,找到相應的等量關系是解決本題的關鍵.5、B【解析】

根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.【詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【點睛】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).6、D【解析】

畫圖,找出G2的臨界點,以及G1的臨界直線,分析出G1過定點,根據(jù)k的正負與函數(shù)增減變化的關系,結合函數(shù)圖象逐個選項分析即可解答.【詳解】解:一次函數(shù)y2=2x+3(﹣1<x<2)的函數(shù)值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個臨界點,易知一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象過定點M(2,1),直線MN與直線MQ為G1與G2有公共點的兩條臨界直線,從而當G1與G2有公共點時,y1隨x增大而減小;故①正確;當G1與G2沒有公共點時,分三種情況:一是直線MN,但此時k=0,不符合要求;二是直線MQ,但此時k不存在,與一次函數(shù)定義不符,故MQ不符合題意;三是當k>0時,此時y1隨x增大而增大,符合題意,故②正確;當k=2時,G1與G2平行正確,過點M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點睛】本題是一次函數(shù)中兩條直線相交或平行的綜合問題,需要數(shù)形結合,結合一次函數(shù)的性質(zhì)逐條分析解答,難度較大.7、B【解析】

科學計數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【詳解】解:35578=3.5578×,故選B.【點睛】本題主要考查的是利用科學計數(shù)法表示較大的數(shù),屬于基礎題型.理解科學計數(shù)法的表示方法是解題的關鍵.8、C【解析】

∵當x<h時,y隨x的增大而增大,當x>h時,y隨x的增大而減小,∴①若h<1≤x≤3,x=1時,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當x=3時,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點睛:本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的增減性和最值分兩種情況討論是解題的關鍵.9、C【解析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點:簡單組合體的三視圖.10、C【解析】

如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準確識圖是解題的關鍵.11、B【解析】從左邊看可以看到兩個小正方形摞在一起,故選B.12、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、15【解析】

根據(jù)圓的基本性質(zhì)得出四邊形OABC為菱形,∠AOB=60°,然后根據(jù)同弧所對的圓心角與圓周角之間的關系得出答案.【詳解】解:∵OABC為平行四邊形,OA=OC=OB,∴四邊形OABC為菱形,∠AOB=60°,∵OD⊥AB,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案為:15.【點睛】本題主要考查的是圓的基本性質(zhì)問題,屬于基礎題型.根據(jù)題意得出四邊形OABC為菱形是解題的關鍵.14、1【解析】分析:對所求代數(shù)式根據(jù)分式的混合運算順序進行化簡,再把變形后整體代入即可.詳解:故答案為1.點睛:考查分式的混合運算,掌握運算順序是解題的關鍵.注意整體代入法的運用.15、3.86×108【解析】根據(jù)科學記數(shù)法的表示(a×10n,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是非負數(shù);當原數(shù)的絕對值<1時,n是負數(shù))形式可得:3.86億=386000000=3.86×108.故答案是:3.86×108.16、°【解析】

通過旋轉(zhuǎn),把PA、PB、PC或關聯(lián)的線段集中到同一個三角形,再根據(jù)兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點順時針旋轉(zhuǎn)90°,得△P′BC,則△PAB≌△P′BC,設PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點睛】本題考查的是正方形四邊相等的性質(zhì),考查直角三角形中勾股定理的運用,把△PAB順時針旋轉(zhuǎn)90°使得A′與C點重合是解題的關鍵.17、【解析】

設扇形的圓心角為n°,則根據(jù)扇形的弧長公式有:,解得所以18、【解析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值即其發(fā)生的概率.詳解:由于共有8個球,其中籃球有5個,則從袋子中摸出一個球,摸出藍球的概率是,故答案是.點睛:此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1【解析】==1.故答案為1.20、(1);(2)以點為圓心,半徑長為4的圓與直線相離;理由見解析;(3)點、的坐標分別為、或、或、.【解析】

(1)分別把A,B點坐標帶入函數(shù)解析式可求得b,c即可得到二次函數(shù)解析式(2)先求出頂點的坐標,得到直線解析式,再分別求得MN的坐標,再求出NC比較其與4的大小可得圓與直線的位置關系.(3)由題得出tanBAO=,分情況討論求得F,H坐標.【詳解】(1)把點、代入得,解得,,∴拋物線的解析式為.(2)由得,∴頂點的坐標為,把代入得解得,∴直線解析式為,設點,代入得,∴得,設點,代入得,∴得,由于直線與軸、軸分別交于點、∴易得、,∴,∴,∵點在直線上,∴,∴,即,∵,∴以點為圓心,半徑長為4的圓與直線相離.(3)點、的坐標分別為、或、或、.C(-1,-1),A(0,6),B(1,3)可得tanBAO=,情況1:tanCF1M==,CF1=9,MF1=6,H1F1=5,F1(8,8),H1(3,3);情況2:F2(-5,-5),H2(-10,-10)(與情況1關于L2對稱);情況3:F3(8,8),H3(-10,-10)(此時F3與F1重合,H3與H2重合).【點睛】本題考查的知識點是二次函數(shù)綜合題,解題的關鍵是熟練的掌握二次函數(shù)綜合題.21、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【解析】

(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調(diào)查的跳水運動員人數(shù);用16歲年齡的人數(shù)除以本次接受調(diào)查的跳水運動員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計圖中給出的信息,結合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.【點睛】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關鍵.22、(1)117(2)見解析(3)B(4)30【解析】

(1)先根據(jù)B等級人數(shù)及其百分比求得總人數(shù),總人數(shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360°乘以C等級人數(shù)所占比例即可得;(2)根據(jù)以上所求結果即可補全圖形;(3)根據(jù)中位數(shù)的定義求解可得;(4)總人數(shù)乘以樣本中A等級人數(shù)所占比例可得.【詳解】解:(1)∵總人數(shù)為18÷45%=40人,∴C等級人數(shù)為40﹣(4+18+5)=13人,則C對應的扇形的圓心角是360°×=117°,故答案為117;(2)補全條形圖如下:(3)因為共有40個數(shù)據(jù),其中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在B等級,所以所抽取學生的足球運球測試成績的中位數(shù)會落在B等級,故答案為B.(4)估計足球運球測試成績達到A級的學生有300×=30人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?3、(1)見解析;(2)時,的值最大,【解析】

(1)延長BA、CF交于點G,利用可證△AFG≌△DFC得出,,根據(jù),可證出,得出,利用,,點是的中點,得出,,則有,可得出,得出,即可得出結論;(2)設BE=x,則,,由勾股定理得出,,得出,求出,由二次函數(shù)的性質(zhì)得出當x=1,即BE=1時,CE2-CF2有最大值,,由三角函數(shù)定義即可得出結果.【詳解】解:(1)證明:如圖,延長交的延長線于點,∵為的中點,∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,點是的中點,∴,.∴.∴.∴.在中,,又∵,∴.∴(2)設,則,∵,∴,在中,,在中,,∵,∴,∴,∴當,即時,的值最大,∴.在中,【點睛】本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、等腰三角形的判定與性質(zhì)等知識;證明三角形全等和等腰三角形是解題的關鍵.24、(1)10,5元;(2)補圖見解析;(3)在甲、乙兩超市參加搖獎的50名顧客平均獲獎分別為10元、8.2元;(4).【解析】

(1)根據(jù)中位數(shù)、眾數(shù)的定義解答即可;(2)根據(jù)表格中的數(shù)據(jù)補全統(tǒng)計圖即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論