




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年甘肅省武威市第一中普通高中畢業(yè)班質量檢查數(shù)學試題文試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.22.已知定義在R上的函數(shù)(m為實數(shù))為偶函數(shù),記,,則a,b,c的大小關系為()A. B. C. D.3.在的展開式中,含的項的系數(shù)是()A.74 B.121 C. D.4.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽國內外.據(jù)統(tǒng)計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.95445.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.6.若,,則的值為()A. B. C. D.7.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.8.若復數(shù)為虛數(shù)單位在復平面內所對應的點在虛軸上,則實數(shù)a為()A. B.2 C. D.9.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.10.若平面向量,滿足,則的最大值為()A. B. C. D.11.《周易》歷來被人們視作儒家群經之首,它表現(xiàn)了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數(shù)的思想方法.我們用近代術語解釋為:把陽爻“-”當作數(shù)字“1”,把陰爻“--”當作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號表示的二進制數(shù)表示的十進制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數(shù)是()A.18 B.17 C.16 D.1512.設等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.12二、填空題:本題共4小題,每小題5分,共20分。13.設函數(shù),若在上的最大值為,則________.14.設,滿足約束條件,則的最大值為______.15.點是曲線()圖象上的一個定點,過點的切線方程為,則實數(shù)k的值為______.16.若非零向量,滿足,,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積18.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關系如下表:日期1234567全國累計報告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運用相關系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關系?(2)求出關于的線性回歸方程(系數(shù)精確到0.01).并預測2月10日全國累計報告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關系數(shù)回歸方程中斜率和截距的最小二乘估計公式分別為:,.19.(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45°的直線,交于點,且的最大值為,求的值.21.(12分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.22.(10分)已知函數(shù),其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.2、B【解析】
根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調性,對于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調性去比較函數(shù)值大小.3、D【解析】
根據(jù),利用通項公式得到含的項為:,進而得到其系數(shù),【詳解】因為在,所以含的項為:,所以含的項的系數(shù)是的系數(shù)是,,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數(shù),還考查了運算求解的能力,屬于基礎題,4、C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉化為,結合正態(tài)分布曲線的性質可求得結果.【詳解】由題意,,,則,,所以,.故果實直徑在內的概率為0.8185.故選:C【點睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎題.5、B【解析】
設雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.6、A【解析】
取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應用,取和是解題的關鍵.7、A【解析】
先利用最高點縱坐標求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結合五點法作圖求解.屬于中檔題.8、D【解析】
利用復數(shù)代數(shù)形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.9、D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.10、C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質,化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.11、B【解析】
由題意可知“屯”卦符號“”表示二進制數(shù)字010001,將其轉化為十進制數(shù)即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數(shù)字010001,轉化為十進制數(shù)的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數(shù)制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.12、A【解析】
由題意知成等差數(shù)列,結合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質,考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結合等差數(shù)列性質,可使得計算量大大減少.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出函數(shù)的導數(shù),由在上,可得在上單調遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域為,在上單調遞增,故在上的最大值為故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的單調性與最值,屬于基礎題.14、29【解析】
由約束條件作出可行域,化目標函數(shù)為以原點為圓心的圓,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規(guī)劃問題,首先明確可行域對應的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結合圖形確定目標函數(shù)最值取法、值域范圍.15、1【解析】
求出導函數(shù),由切線斜率為4即導數(shù)為4求出切點橫坐標,再由切線方程得縱坐標后可求得.【詳解】設,由題意,∴,,,即,∴,.故答案為:1.【點睛】本題考查導數(shù)的幾何意義,函數(shù)圖象某點處的切線的斜率就是該點處導數(shù)值.本題屬于基礎題.16、1【解析】
根據(jù)向量的模長公式以及數(shù)量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點睛】本題主要考查了向量的數(shù)量積公式以及模長公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)先把參數(shù)方程化成普通方程,再利用極坐標的公式把普通方程化成極坐標方程;(2)先利用極坐標求出弦長,再求高,最后求的面積.【詳解】(1)曲線的極坐標方程為:,因為曲線的普通方程為:,曲線的極坐標方程為;(2)由(1)得:點的極坐標為,點的極坐標為,,點到射線的距離為的面積為.【點睛】本題考查普通方程、參數(shù)方程與極坐標方程之間的互化,同時也考查了利用極坐標方程求解面積問題,考查計算能力,屬于中等題.18、(1)可以用線性回歸模型擬合與的關系;(2),預測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關性越高來判斷.(2)由(1)的相關數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因為與的相關近似為0.99,說明它們的線性相關性相當高,從而可以用線性回歸模型擬合與的關系.(2)由(1)得,,,所以,關于的回歸方程為:,2月10日,即代入回歸方程得:.所以預測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【點睛】本題主要考查線性回歸分析和回歸方程的求解及應用,還考查了運算求解的能力,屬于中檔題.19、(1)(2)最大值;最小值.【解析】
(1)結合極坐標和直角坐標的互化公式可得;(2)利用參數(shù)方程,求解點到直線的距離公式,結合三角函數(shù)知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標和直角坐標的轉化及最值問題,橢圓上的點到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側重考查數(shù)學運算的核心素養(yǎng).20、(1),;(2)或【解析】
(1)將曲線的極坐標方程和直線的參數(shù)方程化為直角坐標方程,聯(lián)立方程,即可求得曲線與的交點坐標;(2)由直線的普通方程為,故上任意一點,根據(jù)點到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標方程為.當時,直線的普通方程為由解得或.從而與的交點坐標為,.(2)由題意知直線的普通方程為,的參數(shù)方程為(為參數(shù))故上任意一點到的距離為則.當時,的最大值為所以;當時,的最大值為,所以.綜上所述,或【點睛】解題關鍵是掌握極坐標和參數(shù)方程化為直角坐標方程的方法,和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.21、(1);(2)①證明見解析;②能,.【解析】
(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設,,寫出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技企業(yè)的商業(yè)決策與倫理考量
- 2024年長沙市雨花區(qū)雨花實驗第三小學教師招聘考試真題
- 科技園區(qū)電力設施隱患排查與整改工作匯報
- 會議展覽設計服務協(xié)議
- 親子活動中介合同
- 2024年南通市啟東市教育體育系統(tǒng)畢業(yè)生招聘教師考試真題
- 2024年濟寧金鄉(xiāng)縣事業(yè)單位招聘綜合類崗位考試真題
- 2025至2030年中國柔版水性光油數(shù)據(jù)監(jiān)測研究報告
- 藥材銷貨合同范本
- 免疫健康推廣項目的咨詢合同
- 預防流感健康知識講座總結
- 國際標準《風險管理指南》(ISO31000)的中文版
- 2023年4月自考00808商法試題及答案含解析
- 幼兒園中班語言《猜燈謎》
- 中醫(yī)外科瘡瘍病
- (高清版)DZT 0004-2015 重力調查技術規(guī)范(150 000)
- 子癇前期危險因素篩查策略
- 燃氣過戶協(xié)議書
- 煙花爆竹經營
- 射頻同軸電纜簡介
- 《勞動專題教育》課件-勞動的產生
評論
0/150
提交評論