2022-2023學年安徽省渦陽縣第一中學下學期高三數學試題第二次質量檢測試題考試試卷_第1頁
2022-2023學年安徽省渦陽縣第一中學下學期高三數學試題第二次質量檢測試題考試試卷_第2頁
2022-2023學年安徽省渦陽縣第一中學下學期高三數學試題第二次質量檢測試題考試試卷_第3頁
2022-2023學年安徽省渦陽縣第一中學下學期高三數學試題第二次質量檢測試題考試試卷_第4頁
2022-2023學年安徽省渦陽縣第一中學下學期高三數學試題第二次質量檢測試題考試試卷_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年安徽省渦陽縣第一中學下學期高三數學試題第二次質量檢測試題考試試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,經過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.2.的展開式中的系數是()A.160 B.240 C.280 D.3203.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.44.設向量,滿足,,,則的取值范圍是A. B.C. D.5.設是等差數列的前n項和,且,則()A. B. C.1 D.26.已知無窮等比數列的公比為2,且,則()A. B. C. D.7.若復數滿足(是虛數單位),則()A. B. C. D.8.已知函數,.若存在,使得成立,則的最大值為()A. B.C. D.9.若實數x,y滿足條件,目標函數,則z的最大值為()A. B.1 C.2 D.010.等差數列的前項和為,若,,則數列的公差為()A.-2 B.2 C.4 D.711.已知復數z=(1+2i)(1+ai)(a∈R),若z∈R,則實數a=()A. B. C.2 D.﹣212.在中,分別為所對的邊,若函數有極值點,則的范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在菱形ABCD中,AB=3,,E,F分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)14.已知集合,則_______.15.函數過定點________.16.已知三棱錐的四個頂點都在球O的球面上,,,,,E,F分別為,的中點,,則球O的體積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數的最小值為1.(1)證明:.(2)若恒成立,求實數的最大值.18.(12分)為了加強環(huán)保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內的人數;(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數,求的分布列和數學期望.19.(12分)在中,內角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當的面積取得最大值時,求AD的長.20.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.21.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內角,,所對的邊分別為,,,三邊,,與面積滿足關系式:,且,求的面積的值(或最大值).22.(10分)等比數列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據所求雙曲線的漸近線方程為,可設所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質的應用,屬于基礎題.2、C【解析】

首先把看作為一個整體,進而利用二項展開式求得的系數,再求的展開式中的系數,二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數是.故選:C【點睛】本題考查二項展開式指定項的系數,掌握二項展開式的通項是解題的關鍵,屬于基礎題.3、B【解析】

因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!4、B【解析】

由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數量積,考查模長公式,準確計算是關鍵,是基礎題.5、C【解析】

利用等差數列的性質化簡已知條件,求得的值.【詳解】由于等差數列滿足,所以,,.故選:C【點睛】本小題主要考查等差數列的性質,屬于基礎題.6、A【解析】

依據無窮等比數列求和公式,先求出首項,再求出,利用無窮等比數列求和公式即可求出結果?!驹斀狻恳驗闊o窮等比數列的公比為2,則無窮等比數列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數列求和公式的應用。7、B【解析】

利用復數乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復數的乘法運算,考查復數模的計算,屬于基礎題.8、C【解析】

由題意可知,,由可得出,,利用導數可得出函數在區(qū)間上單調遞增,函數在區(qū)間上單調遞增,進而可得出,由此可得出,可得出,構造函數,利用導數求出函數在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數的定義域為,對恒成立,所以,函數在區(qū)間上單調遞增,同理可知,函數在區(qū)間上單調遞增,,則,,則,構造函數,其中,則.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,.故選:C.【點睛】本題考查代數式最值的計算,涉及指對同構思想的應用,考查化歸與轉化思想的應用,有一定的難度.9、C【解析】

畫出可行域和目標函數,根據平移得到最大值.【詳解】若實數x,y滿足條件,目標函數如圖:當時函數取最大值為故答案選C【點睛】求線性目標函數的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最?。划敃r,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.10、B【解析】

在等差數列中由等差數列公式與下標和的性質求得,再由等差數列通項公式求得公差.【詳解】在等差數列的前項和為,則則故選:B【點睛】本題考查等差數列中求由已知關系求公差,屬于基礎題.11、D【解析】

化簡z=(1+2i)(1+ai)=,再根據z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數的運算及概念,還考查了運算求解的能力,屬于基礎題.12、D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數的極值.【方法點晴】本題考查余弦定理,函數的極值,涉及函數與方程思想思想、數形結合思想和轉化化歸思想,考查邏輯思維能力、等價轉化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉化化歸思想將原命題轉化為有兩個不等實根,從而可得.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據題意,設,則,所以,解得,所以,從而有.14、【解析】

由可得集合是奇數集,由此可以得出結果.【詳解】解:因為所以集合中的元素為奇數,所以.【點睛】本題考查了集合的交集,解析出集合B中元素的性質是本題解題的關鍵.15、【解析】

令,,與參數無關,即可得到定點.【詳解】由指數函數的性質,可得,函數值與參數無關,所有過定點.故答案為:【點睛】此題考查函數的定點問題,關鍵在于找出自變量的取值使函數值與參數無關,熟記常見函數的定點可以節(jié)省解題時間.16、【解析】

可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據體積公式計算可得.【詳解】解:,,,因為為的中點,所以為的外心,因為,所以點在內的投影為的外心,所以平面,平面,所以,所以,又球心在上,設,則,所以,所以球O體積,.故答案為:【點睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)2;(2)【解析】分析:(1)將轉化為分段函數,求函數的最小值(2)分離參數,利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調遞減,在上單調遞增,所以的最小值為,即.(Ⅱ)因為恒成立,所以恒成立,當且僅當時,取得最小值,所以,即實數的最大值為.點睛:本題主要考查含兩個絕對值的函數的最值和不等式的應用,第二問恒成立問題分離參數,利用基本不等式求解很關鍵,屬于中檔題.18、(1)所抽取的人中得分落在組和內的人數分別為人、人;(2)分布列見解析,.【解析】

(1)將分別乘以區(qū)間、對應的矩形面積可得出結果;(2)由題可知,隨機變量的可能取值為、、,利用超幾何分布概率公式計算出隨機變量在不同取值下的概率,可得出隨機變量的分布列,并由此計算出隨機變量的數學期望值.【詳解】(1)由題意知,所抽取的人中得分落在組的人數有(人),得分落在組的人數有(人).因此,所抽取的人中得分落在組的人數有人,得分落在組的人數有人;(2)由題意可知,隨機變量的所有可能取值為、、,,,,所以,隨機變量的分布列為:所以,隨機變量的期望為.【點睛】本題考查利用頻率分布直方圖計算頻數,同時也考查了離散型隨機變量分布列與數學期望的求解,考查計算能力,屬于基礎題.19、(1);(2).【解析】

(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.【點睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學生的計算能力,是一道容易題.20、(1)(2)【解析】

(1)根據正弦定理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學生的計算能力.21、見解析【解析】

若選擇①,結合三角形的面積公式,得,化簡得到,則,又,從而得到,將代入,得.又,∴,當且僅當時等號成立.∴,故的面積的最大值為,此時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論