九年級(jí)人教版銳角三角函數(shù)銳角三角函數(shù)正弦PPT_第1頁(yè)
九年級(jí)人教版銳角三角函數(shù)銳角三角函數(shù)正弦PPT_第2頁(yè)
九年級(jí)人教版銳角三角函數(shù)銳角三角函數(shù)正弦PPT_第3頁(yè)
九年級(jí)人教版銳角三角函數(shù)銳角三角函數(shù)正弦PPT_第4頁(yè)
九年級(jí)人教版銳角三角函數(shù)銳角三角函數(shù)正弦PPT_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二十八章銳角三角函數(shù) 28.1銳角三角函數(shù)

第1課時(shí)1.理解當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊與斜邊的比值就固定(即正弦值不變)這一事實(shí).2.理解正弦的概念.問題:為了綠化荒山,某地打算從位于山腳下的機(jī)井房沿著山坡鋪設(shè)水管,在山坡上修建一座揚(yáng)水站,對(duì)坡面的綠地進(jìn)行噴灌.現(xiàn)測(cè)得斜坡與水平面所成角的度數(shù)是30°,為使出水口的高度為35m,那么需要準(zhǔn)備多長(zhǎng)的水管?分析:這個(gè)問題可以歸結(jié)為,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB.ABC在上面的問題中,如果使出水口的高度為50m,那么需要準(zhǔn)備多長(zhǎng)的水管?ABC50m35mB'C'根據(jù)“直角三角形中,30度角所對(duì)的邊等于斜邊的一半”,即,得AB′=2B′C′=100m.結(jié)論:在一個(gè)直角三角形中,如果一個(gè)銳角等于30°,那么不管三角形的大小如何,這個(gè)角的對(duì)邊與斜邊的比值都等于即在直角三角形中,當(dāng)一個(gè)銳角等于45°時(shí),不管這個(gè)直角三角形的大小如何,這個(gè)角的對(duì)邊與斜邊的比都等于如圖,任意畫一個(gè)Rt△ABC,使∠C=90°,∠A=45°,計(jì)算∠A的對(duì)邊與斜邊的比,你能得出什么結(jié)論?ABC綜上可知,在一個(gè)Rt△ABC中,∠C=90°,當(dāng)∠A=30°時(shí),∠A的對(duì)邊與斜邊的比都等于,是一個(gè)固定值;當(dāng)∠A=45°時(shí),∠A的對(duì)邊與斜邊的比都等于,也是一個(gè)固定值.一般地,當(dāng)∠A取其他一定度數(shù)的銳角時(shí),它的對(duì)邊與斜邊的比是否也是一個(gè)固定值?結(jié)論:任意畫Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=α,那么與有什么關(guān)系.你能解釋一下嗎?ABCA'B'C'兩個(gè)三角形相似,對(duì)應(yīng)邊成比例,故比值相等.

這就是說,在直角三角形中,當(dāng)銳角A的度數(shù)一定時(shí),不管三角形的大小如何,∠A的對(duì)邊與斜邊的比都是一個(gè)固定值.結(jié)論:

定義:如圖,在Rt△ABC中,∠C=90°,我們把銳角A的對(duì)邊與斜邊的比叫做∠A的正弦(sine),記作sinA

即例如,當(dāng)∠A=30°時(shí),我們有當(dāng)∠A=45°時(shí),我們有ABCb對(duì)邊斜邊在圖中∠A的對(duì)邊記作a∠B的對(duì)邊記作b∠C的對(duì)邊記作c【例1】如圖,在Rt△ABC中,∠C=90°,求sinA和sinB的值.ABCABC135新知探究34求sinA就是要確定∠A的對(duì)邊與斜邊的比;求sinB就是要確定∠B的對(duì)邊與斜邊的比?!纠?】如圖,在Rt△ABC中,∠B=90°,AC=200,sinA=0.6,求BC的長(zhǎng).200ACB┌【解析】在Rt△ABC中,【例題】1.判斷對(duì)錯(cuò):A10m6mBC(1)如圖sinA=()②sinB=.()③sinA=0.6m.()④sinB=0.8.()√√××sinA是一個(gè)比值,無單位.(2)如圖,sinA=()

×【跟蹤訓(xùn)練】2.在Rt△ABC中,銳角A的對(duì)邊和斜邊同時(shí)擴(kuò)大100倍,sinA的值()A.擴(kuò)大100倍B.縮小C.不變D.不能確定C3.如圖ACB3730°,則sinA=______.1.(溫州·中考)如圖,在△ABC中,∠C=90°,AB=13,BC=5,則sinA的值是()A.B.C.D.【解析】選A.由正弦的定義可得2.在平面直角坐標(biāo)系中,已知點(diǎn)A(3,0)和B(0,-4),則sin∠OAB等于____.3.在Rt△ABC中,∠C=90°,AD是BC邊上的中線,AC=2,BC=4,則sin∠DAC=_____.4.如圖,在Rt△ABC中,則sinA=___.ACB求一個(gè)角的正弦值,除了用定義直接求外,還可以轉(zhuǎn)化為求和它相等角的正弦值.5.如圖,∠C=90°CD⊥AB.sinB可以用哪兩條線段之比表示?若AC=5,CD=3,求sinB的值.┌ACBD表示.∵∠B=∠ACD

,∴sinB=sin∠ACD.在Rt△ACD中,AD=sin∠ACD=∴sinB=【解析】sinB可以用或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論