版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
清遠市重點中學2023年初三5月聯(lián)考數學試題試卷試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點E,點D為AB的中點,連接DE,則△BDE的周長是()A.3 B.4 C.5 D.62.據相關報道,開展精準扶貧工作五年以來,我國約有55000000人擺脫貧困,將55000000用科學記數法表示是()A.55×106 B.0.55×108 C.5.5×106 D.5.5×1073.如圖所示,從☉O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC,已知∠A=26°,則∠ACB的度數為()A.32° B.30° C.26° D.13°4.如圖是一次數學活動課制作的一個轉盤,盤面被等分成四個扇形區(qū)域,并分別標有數字-1,0,1,2.若轉動轉盤兩次,每次轉盤停止后記錄指針所指區(qū)域的數字(當指針恰好指在分界線上時,不記,重轉),則記錄的兩個數字都是正數的概率為()A. B. C. D.5.方程有兩個實數根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<16.若實數a,b滿足|a|>|b|,則與實數a,b對應的點在數軸上的位置可以是()A. B. C. D.7.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.108.如圖,一次函數和反比例函數的圖象相交于,兩點,則使成立的取值范圍是()A.或 B.或C.或 D.或9.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.10.2012﹣2013NBA整個常規(guī)賽季中,科比罰球投籃的命中率大約是83.3%,下列說法錯誤的是A.科比罰球投籃2次,一定全部命中B.科比罰球投籃2次,不一定全部命中C.科比罰球投籃1次,命中的可能性較大D.科比罰球投籃1次,不命中的可能性較小二、填空題(共7小題,每小題3分,滿分21分)11.在一個不透明的袋子里裝有一個黑球和兩個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球,兩次都摸到黑球的概率是__________.12.如圖,是由一些小立方塊所搭幾何體的三種視圖,若在所搭幾何體的基礎上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個大正方體,至少還需要________個小立方塊.13.如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內,使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點A作量角器圓弧所在圓的切線,切點為E,則點E在量角器上所對應的度數是____.14.如圖,利用標桿測量建筑物的高度,已知標桿高1.2,測得,則建筑物的高是__________.15.對于任意不相等的兩個實數,定義運算※如下:※=,如3※2==.那么8※4=.16.如圖,已知函數y=x+2的圖象與函數y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為1.則k的值為_____.17.計算(+)(-)的結果等于________.三、解答題(共7小題,滿分69分)18.(10分)小晗家客廳裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.若小晗任意按下一個開關,正好樓梯燈亮的概率是多少?若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.19.(5分)計算:÷(﹣1)20.(8分)“食品安全”受到全社會的廣泛關注,我區(qū)兼善中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為°;(2)請補全條形統(tǒng)計圖;(3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為2:3,現(xiàn)從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.21.(10分)解方程組:22.(10分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點O,再以點O為圓心,OB的長為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關系,直接寫出結果.23.(12分)如圖所示,在?ABCD中,E是CD延長線上的一點,BE與AD交于點F,DE=CD.(1)求證:△ABF∽△CEB;(2)若△DEF的面積為2,求?ABCD的面積.24.(14分)先化簡,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據等腰三角形的性質可得BE=BC=2,再根據三角形中位線定理可求得BD、DE長,根據三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點,∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.【點睛】本題考查了等腰三角形的性質、三角形中位線定理,熟練掌握三角形中位線定理是解題的關鍵.2、D【解析】試題解析:55000000=5.5×107,故選D.考點:科學記數法—表示較大的數3、A【解析】
連接OB,根據切線的性質和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質可得∠C=∠OBC,根據三角形外角的性質即可求得∠ACB的度數.【詳解】連接OB,∵AB與☉O相切于點B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點睛】本題考查了切線的性質,利用切線的性質,結合三角形外角的性質求出角的度數是解決本題的關鍵.4、C【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,總共有16種結果,兩個數都為正數的結果有4種,所以兩個數都為正數的概率為,故選C.考點:用列表法(或樹形圖法)求概率.5、D【解析】當k=1時,原方程不成立,故k≠1,當k≠1時,方程為一元二次方程.∵此方程有兩個實數根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.6、D【解析】
根據絕對值的意義即可解答.【詳解】由|a|>|b|,得a與原點的距離比b與原點的距離遠,只有選項D符合,故選D.【點睛】本題考查了實數與數軸,熟練運用絕對值的意義是解題關鍵.7、D【解析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,
∴∠BAD=90°,點O是線段BD的中點,
∵點M是AB的中點,
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質,利用三角形中位線定理求得AD的長度是解題的關鍵.8、B【解析】
根據圖象找出一次函數圖象在反比例函數圖象上方時對應的自變量的取值范圍即可.【詳解】觀察函數圖象可發(fā)現(xiàn):或時,一次函數圖象在反比例函數圖象上方,∴使成立的取值范圍是或,故選B.【點睛】本題考查了反比例函數與一次函數綜合,函數與不等式,利用數形結合思想是解題的關鍵.9、C【解析】
根據中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、A【解析】試題分析:根據概率的意義,概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生。因此。A、科比罰球投籃2次,不一定全部命中,故本選項正確;B、科比罰球投籃2次,不一定全部命中,正確,故本選項錯誤;C、∵科比罰球投籃的命中率大約是83.3%,∴科比罰球投籃1次,命中的可能性較大,正確,故本選項錯誤;D、科比罰球投籃1次,不命中的可能性較小,正確,故本選項錯誤。故選A。二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
首先根據題意列表,由列表求得所有等可能的結果與兩次都摸到黑球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9種等可能的結果,兩次都摸到黑球的只有1種情況,∴兩次都摸到黑球的概率是19故答案為:19【點睛】考查概率的計算,掌握概率等于所求情況數與總情況數之比是解題的關鍵.12、54【解析】試題解析:由主視圖可知,搭成的幾何體有三層,且有4列;由左視圖可知,搭成的幾何體共有3行;第一層有7個正方體,第二層有2個正方體,第三層有1個正方體,共有10個正方體,∵搭在這個幾何體的基礎上添加相同大小的小正方體,以搭成一個大正方體,∴搭成的大正方體的共有4×4×4=64個小正方體,∴至少還需要64-10=54個小正方體.【點睛】先由主視圖、左視圖、俯視圖求出原來的幾何體共有10個正方體,再根據搭成的大正方體的共有4×4×4=64個小正方體,即可得出答案.本題考查了學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查,關鍵是求出搭成的大正方體共有多少個小正方體.13、60.【解析】
首先設半圓的圓心為O,連接OE,OA,由題意易得AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,繼而求得∠AOE的度數,則可求得答案.【詳解】設半圓的圓心為O,連接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切線,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴點E所對應的量角器上的刻度數是60°,故答案為:60.【點睛】本題考查了切線的性質、全等三角形的判定與性質以及垂直平分線的性質,解題的關鍵是掌握輔助線的作法,注意掌握數形結合思想的應用.14、10.5【解析】
先證△AEB∽△ABC,再利用相似的性質即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點睛】本題考查了相似的判定和性質.利用相似的性質列出含所求邊的比例式是解題的關鍵.15、【解析】
根據新定義的運算法則進行計算即可得.【詳解】∵※=,∴8※4=,故答案為.16、3【解析】
連接OA.根據反比例函數的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點D的坐標.設A(a,a+2),B(b,b+2),則C(-b,-b-2),根據S△OAB=2,得出a-b=2
①.根據S△OAC=2,得出-a-b=2
②,①與②聯(lián)立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設直線y=x+2與y軸交于點D,則D(0,2),設A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2
①.過A點作AM⊥x軸于點M,過C點作CN⊥x軸于點N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2
②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點睛】本題考查了反比例函數與一次函數的交點問題,反比例函數的性質,反比例函數圖象上點的坐標特征,三角形的面積,待定系數法求函數的解析式等知識,綜合性較強,難度適中.根據反比例函數的對稱性得出OB=OC是解題的突破口.17、2【解析】
利用平方差公式進行計算即可得.【詳解】原式==5-3=2,故答案為:2.【點睛】本題考查了二次根式的混合運算,掌握平方差公式結構特征是解本題的關鍵.三、解答題(共7小題,滿分69分)18、(1);(2).【解析】試題分析:(1)、3個等只有一個控制樓梯,則概率就是1÷3;(2)、根據題意畫出樹狀圖,然后根據概率的計算法則得出概率.試題解析:(1)、小晗任意按下一個開關,正好樓梯燈亮的概率是:(2)、畫樹狀圖得:結果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6種等可能的結果,正好客廳燈和走廊燈同時亮的有2種情況,∴正好客廳燈和走廊燈同時亮的概率是=.考點:概率的計算.19、【解析】
根據分式的混合運算法則把原式進行化簡即可.【詳解】原式=÷(﹣)=÷=?=.【點睛】本題考查的是分式的混合運算,熟知分式的混合運算的法則是解答此題的關鍵.20、(1)60,1°.(2)補圖見解析;(3)【解析】
(1)根據了解很少的人數和所占的百分百求出抽查的總人數,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數;(2)用調查的總人數減去“基本了解”“了解很少”和“基本了解”的人數,求出了解的人數,從而補全統(tǒng)計圖;(3)根據題意先畫出樹狀圖,再根據概率公式即可得出答案.【詳解】(1)接受問卷調查的學生共有30÷50%=60(人),扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數有:60﹣15﹣30﹣10=5(人),補圖如下:(3)畫樹狀圖得:?∵共有20種等可能的結果,恰好抽到1個男生和1個女生的有12種情況,∴恰好抽到1個男生和1個女生的概率為=.【點睛】此題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,讀懂題意,根據題意求出總人數是解題的關鍵;概率=所求情況數與總情況數之比.21、【解析】
設=a,=b,則原方程組化為,求出方程組的解,再求出原方程組的解即可.【詳解】設=a,=b,則原方程組化為:,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即,解得:,經檢驗是原方程組的解,所以原方程組的解是.【點睛】此題考查利用換元法解方程組,注意要根據方程組的特點靈活選用合適的方法.解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025勞務合同的格式2
- 2025購房轉讓合同范文
- 2025工程車輛運輸合同
- 2025年塑鋼窗生產廢棄物處理與資源化利用合同2篇
- 2025年度農機銷售與農業(yè)信息化服務合同3篇
- 2025年度智慧城市交通管理系統(tǒng)公司成立協(xié)議書規(guī)范3篇
- 二零二五年度智慧醫(yī)療平臺全新合作協(xié)議3篇
- 二零二五年度公司單位員工勞動合同解除與賠償標準3篇
- 2025年度婚姻財產分配與子女權益保障協(xié)議3篇
- 二零二五年度建筑工程環(huán)境保護三方合同3篇
- 污水處理廠的工藝流程設計
- 社區(qū)矯正人員心理健康講座模板課件
- 中國和新加坡的英漢雙語教育政策比較研究
- 危險品運輸車輛租賃合同
- 英語完形填空閱讀理解40篇
- 裝配式鋼結構工程計量與計價PPT完整全套教學課件
- 小說面面觀(譯文經典)
- 《并聯(lián)機器人運動學》
- 中國聯(lián)通動環(huán)監(jiān)控系統(tǒng)C接口-0812
- 41.脅痛(膽囊結石)中醫(yī)臨床路徑
- 車間現(xiàn)場安全培訓內容課件參考
評論
0/150
提交評論