![安徽省黃山市休寧縣市級名校2021-2022學年中考數(shù)學五模試卷含解析_第1頁](http://file4.renrendoc.com/view/967d7c85267cebd42b3a5a5608731d66/967d7c85267cebd42b3a5a5608731d661.gif)
![安徽省黃山市休寧縣市級名校2021-2022學年中考數(shù)學五模試卷含解析_第2頁](http://file4.renrendoc.com/view/967d7c85267cebd42b3a5a5608731d66/967d7c85267cebd42b3a5a5608731d662.gif)
![安徽省黃山市休寧縣市級名校2021-2022學年中考數(shù)學五模試卷含解析_第3頁](http://file4.renrendoc.com/view/967d7c85267cebd42b3a5a5608731d66/967d7c85267cebd42b3a5a5608731d663.gif)
![安徽省黃山市休寧縣市級名校2021-2022學年中考數(shù)學五模試卷含解析_第4頁](http://file4.renrendoc.com/view/967d7c85267cebd42b3a5a5608731d66/967d7c85267cebd42b3a5a5608731d664.gif)
![安徽省黃山市休寧縣市級名校2021-2022學年中考數(shù)學五模試卷含解析_第5頁](http://file4.renrendoc.com/view/967d7c85267cebd42b3a5a5608731d66/967d7c85267cebd42b3a5a5608731d665.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)2.我國第一艘航母“遼寧艦”最大排水量為67500噸,用科學記數(shù)法表示這個數(shù)字是A.6.75×103噸 B.67.5×103噸 C.6.75×104噸 D.6.75×105噸3.觀察下列圖形,則第n個圖形中三角形的個數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n4.已知一元二次方程1–(x–3)(x+2)=0,有兩個實數(shù)根x1和x2(x1<x2),則下列判斷正確的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<35.已知反比例函數(shù)y=的圖象位于第一、第三象限,則k的取值范圍是()A.k>8 B.k≥8 C.k≤8 D.k<86.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.7.一組數(shù)據8,3,8,6,7,8,7的眾數(shù)和中位數(shù)分別是()A.8,6B.7,6C.7,8D.8,78.如果兩圓只有兩條公切線,那么這兩圓的位置關系是()A.內切 B.外切 C.相交 D.外離9.小明家1至6月份的用水量統(tǒng)計如圖所示,關于這組數(shù)據,下列說法錯誤的是().A.眾數(shù)是6噸 B.平均數(shù)是5噸 C.中位數(shù)是5噸 D.方差是10.若M(2,2)和N(b,﹣1﹣n2)是反比例函數(shù)y=的圖象上的兩個點,則一次函數(shù)y=kx+b的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空題(共7小題,每小題3分,滿分21分)11.化簡:=__________.12.如圖,在中,CM平分交AB于點M,過點M作交AC于點N,且MN平分,若,則BC的長為______.13.已知袋中有若干個小球,它們除顏色外其它都相同,其中只有2個紅球,若隨機從中摸出一個,摸到紅球的概率是,則袋中小球的總個數(shù)是_____14.如圖,這是由邊長為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個圖形的周長是___.15.小華到商場購買賀卡,他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡若小華先買了3張3D立體賀卡,則剩下的錢恰好還能買______張普通賀卡.16.有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是17.如圖,在正方形ABCD中,AD=5,點E,F(xiàn)是正方形ABCD內的兩點,且AE=FC=3,BE=DF=4,則EF的長為__________.三、解答題(共7小題,滿分69分)18.(10分)截至2018年5月4日,中歐班列(鄭州)去回程開行共計1191班,我省與歐洲各國經貿往來日益頻繁,某歐洲客商準備在河南采購一批特色商品,經調查,用1600元采購A型商品的件數(shù)是用1000元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價少20元,已知A型商品的售價為160元,B型商品的售價為240元,已知該客商購進甲乙兩種商品共200件,設其中甲種商品購進x件,該客商售完這200件商品的總利潤為y元(1)求A、B型商品的進價;(2)該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產廠家對甲種商品的出廠價下調a元(50<a<70)出售,且限定商場最多購進120件,若客商保持同種商品的售價不變,請你根據以上信息及(2)中的條件,設計出使該客商獲得最大利潤的進貨方案.19.(5分)如圖,經過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關于直線x=2對稱,求拋物線的函數(shù)表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.20.(8分)如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.21.(10分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點D,延長BD至點E,且BD=2DE,連接AE.(1)求線段CD的長;(2)求△ADE的面積.22.(10分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?23.(12分)如圖1,點為正的邊上一點(不與點重合),點分別在邊上,且.(1)求證:;(2)設,的面積為,的面積為,求(用含的式子表示);(3)如圖2,若點為邊的中點,求證:.圖1圖224.(14分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PB、AB、OP,已知PB是⊙O的切線.(1)求證:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標.【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標為(4,5),故選:D.【點睛】本題考查了切線的性質,坐標與圖形性質,解題的關鍵是掌握切線的性質和坐標計算.2、C【解析】試題分析:根據科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).67500一共5位,從而67500=6.75×2.故選C.3、D【解析】試題分析:由已知的三個圖可得到一般的規(guī)律,即第n個圖形中三角形的個數(shù)是4n,根據一般規(guī)律解題即可.解:根據給出的3個圖形可以知道:第1個圖形中三角形的個數(shù)是4,第2個圖形中三角形的個數(shù)是8,第3個圖形中三角形的個數(shù)是12,從而得出一般的規(guī)律,第n個圖形中三角形的個數(shù)是4n.故選D.考點:規(guī)律型:圖形的變化類.4、B【解析】
設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根據二次函數(shù)的圖像性質可知y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1個單位長度,根據圖像的開口方向即可得出答案.【詳解】設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0時,x=-2或x=3,∴y=-(x﹣3)(x+2)的圖像與x軸的交點為(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1,與x軸的交點的橫坐標為x1、x2,∵-1<0,∴兩個拋物線的開口向下,∴x1<﹣2<3<x2,故選B.【點睛】本題考查二次函數(shù)圖像性質及平移的特點,根據開口方向確定函數(shù)的增減性是解題關鍵.5、A【解析】
本題考查反比例函數(shù)的圖象和性質,由k-8>0即可解得答案.【詳解】∵反比例函數(shù)y=的圖象位于第一、第三象限,∴k-8>0,解得k>8,故選A.【點睛】本題考查了反比例函數(shù)的圖象和性質:①、當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.②、當k>0時,在同一個象限內,y隨x的增大而減小;當k<0時,在同一個象限,y隨x的增大而增大.6、D【解析】
根據正方形的邊長,根據勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質,相似三角形的性質和判定,能求出△ABR和△RDS的面積是解此題的關鍵.7、D【解析】試題分析:根據中位數(shù)和眾數(shù)的定義分別進行解答即可.把這組數(shù)據從小到大排列:3,6,7,7,8,8,8,8出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是8;最中間的數(shù)是7,則這組數(shù)據的中位數(shù)是7考點:(1)眾數(shù);(2)中位數(shù).8、C【解析】
兩圓內含時,無公切線;兩圓內切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關系.熟悉兩圓的不同位置關系中的外公切線和內公切線的條數(shù).9、C【解析】試題分析:根據眾數(shù)、平均數(shù)、中位數(shù)、方差:一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據叫做這組數(shù)據的眾數(shù).將一組數(shù)據按照從小到大(或從大到小)的順序排列,如果數(shù)據的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據的中位數(shù);如果這組數(shù)據的個數(shù)是偶數(shù),則中間兩個數(shù)據的平均數(shù)就是這組數(shù)據的中位數(shù).平均數(shù)是指在一組數(shù)據中所有數(shù)據之和再除以數(shù)據的個數(shù).一般地設n個數(shù)據,x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].數(shù)據:3,4,5,6,6,6,中位數(shù)是5.5,故選C考點:1、方差;2、平均數(shù);3、中位數(shù);4、眾數(shù)10、C【解析】
把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即根據k、b的值確定一次函數(shù)y=kx+b的圖象經過的象限.【詳解】解:把(2,2)代入,得k=4,把(b,﹣1﹣n2)代入得:k=b(﹣1﹣n2),即,∵k=4>0,<0,∴一次函數(shù)y=kx+b的圖象經過第一、三、四象限,故選C.【點睛】本題考查了反比例函數(shù)圖象的性質以及一次函數(shù)經過的象限,根據反比例函數(shù)的性質得出k,b的符號是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、a+b【解析】
將原式通分相減,然后用平方差公式分解因式,再約分化簡即可?!驹斀狻拷猓涸?===a+b【點睛】此題主要考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.12、1【解析】
根據題意,可以求得∠B的度數(shù),然后根據解直角三角形的知識可以求得NC的長,從而可以求得BC的長.【詳解】∵在Rt△ABC中,CM平分∠ACB交AB于點M,過點M作MN∥BC交AC于點N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案為1.【點睛】本題考查含30°角的直角三角形、平行線的性質、等腰三角形的判定與性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.13、8個【解析】
根據概率公式結合取出紅球的概率即可求出袋中小球的總個數(shù).【詳解】袋中小球的總個數(shù)是:2÷=8(個).故答案為8個.【點睛】本題考查了概率公式,根據概率公式算出球的總個數(shù)是解題的關鍵.14、2n+1【解析】觀察擺放的一系列圖形,可得到依次的周長分別是3,4,5,6,7,…,從中得到規(guī)律,根據規(guī)律寫出第n個圖形的周長.解:由已知一系列圖形觀察圖形依次的周長分別是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n個圖形的周長為:2+n.故答案為2+n.此題考查的是圖形數(shù)字的變化類問題,關鍵是通過觀察分析得出規(guī)律,根據規(guī)律求解.15、1【解析】
根據已知他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡得:1張3D立體賀卡的單價是1張普通賀卡單價的4倍,所以設1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡,根據3張3D立體賀卡張普通賀卡張3D立體賀卡,可得結論.【詳解】解:設1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡.
則1張普通賀卡為:元,
由題意得:,
,
答:剩下的錢恰好還能買1張普通賀卡.
故答案為:1.【點睛】本題考查了一元一次方程的應用以及列代數(shù)式,解題的關鍵是:根據總價單價數(shù)量列式計算.16、.【解析】
分別求出從1到6的數(shù)中3的倍數(shù)的個數(shù),再根據概率公式解答即可.【詳解】有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,共有6種結果,其中卡片上的數(shù)是3的倍數(shù)的有3和6兩種情況,所以從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是.故答案為【點睛】考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、【解析】分析:延長AE交DF于G,再根據全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據勾股定理得出EF的長.詳解:延長AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點睛:本題考查了正方形的性質,關鍵是根據全等三角形的判定和性質得出EG=FG=1,再利用勾股定理計算.三、解答題(共7小題,滿分69分)18、(1)80,100;(2)100件,22000元;(3)答案見解析.【解析】
(1)先設A型商品的進價為a元/件,求得B型商品的進價為(a+20)元/件,由題意得等式,解得a=80,再檢驗a是否符合條件,得到答案.(2)先設購機A型商品x件,則由題意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再設獲得的利潤為w元,由題意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,當x=100時代入w=﹣60x+28000,從而得答案.(3)設獲得的利潤為w元,由題意可得w(a﹣60)x+28000,分類討論:當50<a<60時,當a=60時,當60<a<70時,各個階段的利潤,得出最大值.【詳解】解:(1)設A型商品的進價為a元/件,則B型商品的進價為(a+20)元/件,,解得,a=80,經檢驗,a=80是原分式方程的解,∴a+20=100,答:A、B型商品的進價分別為80元/件、100元/件;(2)設購機A型商品x件,80x+100(200﹣x)≤18000,解得,x≥100,設獲得的利潤為w元,w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,∴當x=100時,w取得最大值,此時w=22000,答:該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進100件甲商品,若售完這些商品,則商場可獲得的最大利潤是22000元;(3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,∵50<a<70,∴當50<a<60時,a﹣60<0,y隨x的增大而減小,則甲100件,乙100件時利潤最大;當a=60時,w=28000,此時甲乙只要是滿足條件的整數(shù)即可;當60<a<70時,a﹣60>0,y隨x的增大而增大,則甲120件,乙80件時利潤最大.【點睛】本題考察一次函數(shù)的應用及一次不等式的應用,屬于中檔題,難度不大.19、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】
(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設存在點E使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設在拋物線上還存在點E′,使得以A,C,F(xiàn)′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數(shù)表達式為;(3)存在,理由為:(i)假設存在點E使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設在拋物線上還存在點E′,使得以A,C,F(xiàn)′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).20、(1)證明見解析;(2).【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進而可證明△ADE∽△ABC;(2)△ADE∽△ABC,,又易證△EAF∽△CAG,所以,從而可求解.【詳解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考點:相似三角形的判定21、(1)43;(2)S【解析】分析:(1)過點D作DH⊥AB,根據角平分線的性質得到DH=DC根據正弦的定義列出方程,解方程即可;(2)根據三角形的面積公式計算.詳解:(1)過點D作DH⊥AB,垂足為點H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,則AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.∵sin∠BAC=HDAD=(2)S△ABD∵BD=2DE,∴S△ABD點睛:本題考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.22、(1)一個足球需要50元,一個籃球需要80元;(2)1個.【解析】
(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,根據購買2個足球和3個籃球共需340元,4個排球和5個籃球共需600元,可得出方程組,解出即可;【詳解】(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,由題意得:2x+3y=解得:x=50y=80答:購買一個足球需要50元,購買一個籃球需要80元;(2)設該中學購買籃球m個,由題意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整數(shù),∴m最大可取1.答:這所中學最多可以購買籃球1個.【點睛】本題考查了一元一次不等式及二元一次方程組的知識,解答本題的關鍵是仔細審題,得到等量關系及不等關系,難度一般.23、(1)詳見解析;(1)詳見解析;(3)詳見解析.【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手房按揭買房買賣合同
- 國際公路運輸合同范本
- 2025船舶買賣合同書樣本版
- 提高創(chuàng)新能力的技能培訓
- 提高人際關系的培訓課程
- 品牌服務合同范本
- 2024年公共事業(yè)領域投資合同
- 吊車零租賃合同范本
- 鋼釘鐵釘售賣合同
- 2025有限責任公司銀行貸款擔保合同
- 2025年中國黃芪提取物市場調查研究報告
- 安徽省定遠重點中學2024-2025學年第一學期高二物理期末考試(含答案)
- 教育教學質量經驗交流會上校長講話:聚焦課堂關注個體全面提升教育教學質量
- 2024人教新目標(Go for it)八年級英語上冊【第1-10單元】全冊 知識點總結
- 企業(yè)新員工培訓師帶徒方案
- 美容美發(fā)行業(yè)衛(wèi)生管理規(guī)范
- 培訓機構校區(qū)管理規(guī)劃
- DB13(J)-T 8541-2023 全過程工程咨詢服務標準
- 河南省安陽市2024年中考一模語文試卷(含答案)
- TD/T 1044-2014 生產項目土地復墾驗收規(guī)程(正式版)
- 2024年湖南現(xiàn)代物流職業(yè)技術學院單招職業(yè)適應性測試題庫及答案1套
評論
0/150
提交評論