福建省泉州市安溪縣市級名校2021-2022學年中考五模數(shù)學試題含解析_第1頁
福建省泉州市安溪縣市級名校2021-2022學年中考五模數(shù)學試題含解析_第2頁
福建省泉州市安溪縣市級名校2021-2022學年中考五模數(shù)學試題含解析_第3頁
福建省泉州市安溪縣市級名校2021-2022學年中考五模數(shù)學試題含解析_第4頁
福建省泉州市安溪縣市級名校2021-2022學年中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB∥CD,F(xiàn)H平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH2.如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規(guī)律,則第(n)個圖形中面積為1的正方形的個數(shù)為()A. B. C. D.3.如圖,數(shù)軸上有A,B,C,D四個點,其中絕對值最小的數(shù)對應的點是()A.點A B.點B C.點C D.點D4.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結論有()A.4個 B.3個 C.2個 D.1個5.下列計算正確的是()A.a3﹣a2=a B.a2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a66.已知關于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.47.實數(shù)﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.8.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)9.下列運算正確的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2?a3=a6D.5a+2b=7ab10.下列計算或化簡正確的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.數(shù)學的美無處不在.數(shù)學家們研究發(fā)現(xiàn),彈撥琴弦發(fā)出聲音的音調高低,取決于弦的長度,繃得一樣緊的幾根弦,如果長度的比能夠表示成整數(shù)的比,發(fā)出的聲音就比較和諧.例如,三根弦長度之比是15:12:10,把它們繃得一樣緊,用同樣的力彈撥,它們將分別發(fā)出很調和的樂聲do、mi、so,研究15、12、10這三個數(shù)的倒數(shù)發(fā)現(xiàn):.我們稱15、12、10這三個數(shù)為一組調和數(shù).現(xiàn)有一組調和數(shù):x,5,3(x>5),則x的值是.12.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長_____海里.13.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.14.分解因式:m3–m=_____.15.一個不透明的袋子中裝有6個球,其中2個紅球、4個黑球,這些球除顏色外無其他差別.現(xiàn)從袋子中隨機摸出一個球,則它是黑球的概率是______.16.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為_____.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:,其中,.18.(8分)如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F(xiàn),且DE=EF.求證:∠C=90°;當BC=3,sinA=時,求AF的長.19.(8分)如圖,在中,,是角平分線,平分交于點,經過兩點的交于點,交于點,恰為的直徑.求證:與相切;當時,求的半徑.20.(8分)已知a2+2a=9,求的值.21.(8分)如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結果保留根號).22.(10分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進“園林城市”建設,今春種植了四類花苗,園林部門從種植的這批花苗中隨機抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經統(tǒng)計這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據圖表中的信息解答下列問題:扇形統(tǒng)計圖中玉蘭所對的圓心角為,并補全條形統(tǒng)計圖;該區(qū)今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.23.(12分)臺州市某水產養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數(shù)關系如圖所示:(1)求日銷售量y與時間t的函數(shù)關系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?24.如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結求證:.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據平行線的性質以及角平分線的定義,即可得到正確的結論.【詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同位角相等;兩直線平行,內錯角相等.2、C【解析】

由圖形可知:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+n+1=.【詳解】第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個.【點睛】本題考查了規(guī)律的知識點,解題的關鍵是根據圖形的變化找出規(guī)律.3、B【解析】試題分析:在數(shù)軸上,離原點越近則說明這個點所表示的數(shù)的絕對值越小,根據數(shù)軸可知本題中點B所表示的數(shù)的絕對值最小.故選B.4、C【解析】

由∠BEG=45°知∠BEA>45°,結合∠AEF=90°得∠HEC<45°,據此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質,等腰三角形的性質,全等三角形的性質和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.5、D【解析】各項計算得到結果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D6、C【解析】

先將原方程變形,轉化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關鍵.7、A【解析】

根據絕對值的性質進行解答即可.【詳解】實數(shù)﹣5.1的絕對值是5.1.故選A.【點睛】本題考查的是實數(shù)的性質,熟知絕對值的性質是解答此題的關鍵.8、D【解析】

過點C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質以及一次函數(shù)的應用,熟練掌握相關知識點是解答的關鍵.9、B【解析】

A選項:利用同底數(shù)冪的除法法則,底數(shù)不變,只把指數(shù)相減即可;

B選項:利用平方差公式,應先把2a看成一個整體,應等于(2a)2-b2而不是2a2-b2,故本選項錯誤;

C選項:先把(-a)2化為a2,然后利用同底數(shù)冪的乘法法則,底數(shù)不變,只把指數(shù)相加,即可得到;

D選項:兩項不是同類項,故不能進行合并.【詳解】A選項:a6÷a2=a4,故本選項錯誤;

B選項:(2a+b)(2a-b)=4a2-b2,故本選項正確;

C選項:(-a)2?a3=a5,故本選項錯誤;

D選項:5a與2b不是同類項,不能合并,故本選項錯誤;

故選:B.【點睛】考查學生同底數(shù)冪的乘除法法則的運用以及對平方差公式的掌握,同時要求學生對同類項進行正確的判斷.10、D【解析】解:A.不是同類二次根式,不能合并,故A錯誤;B.

,故B錯誤;C.,故C錯誤;D.,正確.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】依據調和數(shù)的意義,有-=-,解得x=1.12、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據平行線的性質得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點睛:本題考查了解直角三角形的應用-方向角問題,平行線的性質,三角函數(shù)的定義,正確理解方向角的定義是解題的關鍵.13、1【解析】

如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據相似三角形的性質就可以求出結論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1【點睛】本題考查了勾股定理的運用,相似三角形的判定及性質的運用,解答時求出△AED∽△ACB是解答本題的關鍵.14、m(m+1)(m-1)【解析】

根據因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【詳解】解:故答案為:m(m+1)(m-1).【點睛】本題考查因式分解,掌握因式分解的技巧是解題關鍵.15、【解析】

根據概率的概念直接求得.【詳解】解:4÷6=.故答案為:.【點睛】本題用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、(,0)【解析】試題解析:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故答案為(,0).三、解答題(共8題,共72分)17、9【解析】

根據完全平方公式、平方差公式、單項式乘多項式可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【詳解】當,時,原式【點睛】本題考查整式的化簡求值,解答本題的關鍵是明確整式化簡求值的方法.18、(1)見解析(2)【解析】

(1)連接OE,BE,因為DE=EF,所以=,從而易證∠OEB=∠DBE,所以OE∥BC,從可證明BC⊥AC;(2)設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=∴∴【點睛】本題考查圓的綜合問題,涉及平行線的判定與性質,銳角三角函數(shù),解方程等知識,綜合程度較高,需要學生靈活運用所學知識.19、(1)證明見解析;(2).【解析】

(1)連接OM,證明OM∥BE,再結合等腰三角形的性質說明AE⊥BE,進而證明OM⊥AE;(2)結合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質計算.【詳解】(1)連接OM,則OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵點M在圓O上,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=4,cosC=∴BE=2,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB==6,設⊙O的半徑為r,則AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴,∴,解得,∴的半徑為.【點睛】本題考查了切線的判定;等腰三角形的性質;相似三角形的判定與性質;解直角三角形等知識,綜合性較強,正確添加輔助線,熟練運用相關知識是解題的關鍵.20、,.【解析】試題分析:原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算得到最簡結果,把已知等式變形后代入計算即可求出值.試題解析:===,∵a2+2a=9,∴(a+1)2=1.∴原式=.21、CE的長為(4+)米【解析】

由題意可先過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.【詳解】過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH?tan∠CAH,∴CH=AH?tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉線CE的長為(4+)米.考點:解直角三角形的應用-仰角俯角問題22、(1)72°,見解析;(2)7280;(3)16【解析】

(1)根據題意列式計算,補全條形統(tǒng)計圖即可;(2)根據題意列式計算即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出選到成活率較高的兩類樹苗的情況數(shù),即可求出所求的概率.【詳解】(1)扇形統(tǒng)計圖中玉蘭所對的圓心角為360°×(1-40%-15%-25%)=72°月季的株數(shù)為2000×90%-380-422-270=728(株),補全條形統(tǒng)計圖如圖所示:(2)月季的成活率為728所以月季成活株數(shù)為8000×91%=7280(株).故答案為:7280.(3)由題意知,成活率較高的兩類花苗是玉蘭和月季,玉蘭、月季、桂花、臘梅分別用A、B、C、D表示,畫樹狀圖如下:所有等可能的情況有12種,其中恰好選到成活率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論