Assembly-Tolerance-Analy教學(xué)講解課件_第1頁
Assembly-Tolerance-Analy教學(xué)講解課件_第2頁
Assembly-Tolerance-Analy教學(xué)講解課件_第3頁
Assembly-Tolerance-Analy教學(xué)講解課件_第4頁
Assembly-Tolerance-Analy教學(xué)講解課件_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

AssemblyToleranceAnalysisPreparedBy:LouisChangDate:2011-5-16AssemblyToleranceAnalysisAssemblyToleranceAnalysisAssemblyToleranceAnalysisIntroduction

AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisSummaryAssemblyToleranceIntroductionWorstCaseModelWorstcasemodelisalsocalledas

up-lowerdeviationmodel,limitationmodelandcompleteexchangemodel.Theequationforevaluatingtheconcludinglink

dimensionisasfollowingTheconcludingdimension’stoleranceΔccanbe

foundasfollowingAssemblyToleranceIntroductionStatisticalModelStatisticalmodelisalsocalledasrootsumsquared(RSS)model.Itisassumedalltolerancesarecoincidentwithcertaincurvedistribution.Thedistributionnormalvalueisequaltotolerancezonenormalvalueandthedistributionscopeisthesamewithtolerancescope.Theassemblytoleranceisasfollowing.Instatisticalmethod,theconcludingdimension’stoleranceΔccanbefoundasfollowing:

Sothedeviationoftheconcludinglinkis

AssemblyToleranceIntroductionMonteCarloModel

MonteCarlomodelisakindofnumericalmethodanditsolvesthetolerancewithrandomsamplingsimulation.

Thebasicprincipleisaprobabilityfunctionisdefinedfromallprobabledata.Sotheprobabilityfunctionisaccumulatedtoaccumulativeprobabilityfunctionandthenthemaxvalueforthefunctionisadjustedto1.Thetolerancevalueisgeneratedwithinthescopeofthetolerancewiththehelpofrandomnumbergenerator.Therandomnumberneedmeetcertaindistributionandnormaldistributionisgenerallyapplied.

AssemblyToleranceIntroductionMonteCarloModelGenerallythedistributionisshownwithbetafunction.Fromtheabovefunction,itcanbeconductedasfollowing.Sotheprobabilityfunctioncanbedefinedasbelow.ThreeparameterscanbeadjustedwithMonteCarloModelandtheyareα,βandsimulationtimes.AssemblyToleranceIntroduction6SigmaModel

6Sigmamodelisalsoastatisticalmethod.Itiscloselyconnectedwithpartmanufacturingprocesscapability(Cp,Cpk).Theassemblytoleranceisbasedonmanufacturingprocessstandarddeviation.GenerallyRSSmodelisonly3sigma.

Cp:ItreflectsmanufacturingprocessaccuracyCpk:ComplexProcessCapabilityIndexAssemblyToleranceIntroductionNormalDistributionNormaldistributionisacontinueprobabilitydistributionthathasabell-shapedprobabilitydensityfunction.μ--Meanorexpectationσ--VarianceStandardNormalDistribution:μ=0,

σ2=1AssemblyToleranceIntroductionStandardNormalDistributionBasedon6SigmaAssemblyToleranceIntroductionStandardNormalDistributionBasedon6SigmaLevelPercentageYield(%)PercentageDefective(%)DPMO(PPM)±1σ68.2731.73317300±2σ95.454.5545500±3σ99.730.272700±4σ99.99370.006363±5σ99.9999430.0000570.57±6σ99.99999980.00000020.002AssemblyToleranceIntroductionStandardNormalDistributionwith1.5SigmaShiftAssemblyToleranceIntroductionStandardNormalDistributionwith1.5SigmaShiftLevelPercentageYield(%)PercentageDefective(%)DPMO(PPM)±1σ31.8568.15691462±2σ69.1530.85308538±3σ93.326.6866807±4σ99.380.626210±5σ99.9770.023233±6σ99.999660.000343.4AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleΔT=0.003+0.001+0.005+0.008+0.002=0.019a.WorstCaseModelb.RSSModelGAP=0.020±0.010GAP=0.020±0.019c.6SigmaModel(Cpk=1.5)GAP=0.020±0.013AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleMonteCarloModelBasedonNormalDistributionAssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleStandardNormalDistribution(μ=0)AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleMeanFrequencyPercentageSigmaLevel0.3505348269.64%±1σ0.3505435287.04%±1.5σ0.3505478695.72%±2σ0.3505494298.84%±2.5σ0.3505499099.80%±3σ0.35055000100.00%±3.5σStandardNormalDistribution(μ=0)AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleStandardNormalDistribution(μ=1.5σ)AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleStandardNormalDistribution(μ=1.5σ)MeanFrequencyPercentageSigmaLevel0.3505143528.70%±1σ0.3505338767.74%±2σ0.3505462592.50%±3σ0.3505496999.38%±4σ0.35055000100.00%±5σAssemblyToleranceAnalysisSummaryAssemblyToleranceAnalysisSummaryItneedtobeconvertedintosymmetrytoleranceifthetoleranceisnotsymmetricduringthecourseofassemblytoleranceanalysis.

Foratlea

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論