版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
AssemblyToleranceAnalysisPreparedBy:LouisChangDate:2011-5-16AssemblyToleranceAnalysisAssemblyToleranceAnalysisAssemblyToleranceAnalysisIntroduction
AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisSummaryAssemblyToleranceIntroductionWorstCaseModelWorstcasemodelisalsocalledas
up-lowerdeviationmodel,limitationmodelandcompleteexchangemodel.Theequationforevaluatingtheconcludinglink
dimensionisasfollowingTheconcludingdimension’stoleranceΔccanbe
foundasfollowingAssemblyToleranceIntroductionStatisticalModelStatisticalmodelisalsocalledasrootsumsquared(RSS)model.Itisassumedalltolerancesarecoincidentwithcertaincurvedistribution.Thedistributionnormalvalueisequaltotolerancezonenormalvalueandthedistributionscopeisthesamewithtolerancescope.Theassemblytoleranceisasfollowing.Instatisticalmethod,theconcludingdimension’stoleranceΔccanbefoundasfollowing:
Sothedeviationoftheconcludinglinkis
AssemblyToleranceIntroductionMonteCarloModel
MonteCarlomodelisakindofnumericalmethodanditsolvesthetolerancewithrandomsamplingsimulation.
Thebasicprincipleisaprobabilityfunctionisdefinedfromallprobabledata.Sotheprobabilityfunctionisaccumulatedtoaccumulativeprobabilityfunctionandthenthemaxvalueforthefunctionisadjustedto1.Thetolerancevalueisgeneratedwithinthescopeofthetolerancewiththehelpofrandomnumbergenerator.Therandomnumberneedmeetcertaindistributionandnormaldistributionisgenerallyapplied.
AssemblyToleranceIntroductionMonteCarloModelGenerallythedistributionisshownwithbetafunction.Fromtheabovefunction,itcanbeconductedasfollowing.Sotheprobabilityfunctioncanbedefinedasbelow.ThreeparameterscanbeadjustedwithMonteCarloModelandtheyareα,βandsimulationtimes.AssemblyToleranceIntroduction6SigmaModel
6Sigmamodelisalsoastatisticalmethod.Itiscloselyconnectedwithpartmanufacturingprocesscapability(Cp,Cpk).Theassemblytoleranceisbasedonmanufacturingprocessstandarddeviation.GenerallyRSSmodelisonly3sigma.
Cp:ItreflectsmanufacturingprocessaccuracyCpk:ComplexProcessCapabilityIndexAssemblyToleranceIntroductionNormalDistributionNormaldistributionisacontinueprobabilitydistributionthathasabell-shapedprobabilitydensityfunction.μ--Meanorexpectationσ--VarianceStandardNormalDistribution:μ=0,
σ2=1AssemblyToleranceIntroductionStandardNormalDistributionBasedon6SigmaAssemblyToleranceIntroductionStandardNormalDistributionBasedon6SigmaLevelPercentageYield(%)PercentageDefective(%)DPMO(PPM)±1σ68.2731.73317300±2σ95.454.5545500±3σ99.730.272700±4σ99.99370.006363±5σ99.9999430.0000570.57±6σ99.99999980.00000020.002AssemblyToleranceIntroductionStandardNormalDistributionwith1.5SigmaShiftAssemblyToleranceIntroductionStandardNormalDistributionwith1.5SigmaShiftLevelPercentageYield(%)PercentageDefective(%)DPMO(PPM)±1σ31.8568.15691462±2σ69.1530.85308538±3σ93.326.6866807±4σ99.380.626210±5σ99.9770.023233±6σ99.999660.000343.4AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleΔT=0.003+0.001+0.005+0.008+0.002=0.019a.WorstCaseModelb.RSSModelGAP=0.020±0.010GAP=0.020±0.019c.6SigmaModel(Cpk=1.5)GAP=0.020±0.013AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleMonteCarloModelBasedonNormalDistributionAssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleStandardNormalDistribution(μ=0)AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleMeanFrequencyPercentageSigmaLevel0.3505348269.64%±1σ0.3505435287.04%±1.5σ0.3505478695.72%±2σ0.3505494298.84%±2.5σ0.3505499099.80%±3σ0.35055000100.00%±3.5σStandardNormalDistribution(μ=0)AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleStandardNormalDistribution(μ=1.5σ)AssemblyToleranceAnalysisExampleAssemblyToleranceAnalysisExampleStandardNormalDistribution(μ=1.5σ)MeanFrequencyPercentageSigmaLevel0.3505143528.70%±1σ0.3505338767.74%±2σ0.3505462592.50%±3σ0.3505496999.38%±4σ0.35055000100.00%±5σAssemblyToleranceAnalysisSummaryAssemblyToleranceAnalysisSummaryItneedtobeconvertedintosymmetrytoleranceifthetoleranceisnotsymmetricduringthecourseofassemblytoleranceanalysis.
Foratlea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 歐亞共同體課程設(shè)計(jì)
- 自動駕駛技術(shù)應(yīng)用總結(jié)
- 體育娛樂行業(yè)人力資源總結(jié)
- 新媒體行業(yè)技術(shù)工作概覽
- 音響行業(yè)演出場地衛(wèi)生消毒方案
- 食品安全銷售總結(jié)
- 非公開發(fā)行股票認(rèn)購協(xié)議三篇
- 2024年稅務(wù)師題庫(輕巧奪冠)
- 2024年美術(shù)教案7篇合集
- 2024年福建開放大學(xué)《網(wǎng)絡(luò)測試與故障維修》形成性考核參考試題庫(含答案)
- 2024年度無人機(jī)部件委托生產(chǎn)加工合同
- 中華人民共和國建筑法
- 心里疏導(dǎo)課件教學(xué)課件
- 統(tǒng)編版2024-2025學(xué)年語文五年級上冊日積月累專項(xiàng)訓(xùn)練練習(xí)題
- 基于機(jī)器學(xué)習(xí)的供應(yīng)鏈風(fēng)險預(yù)測
- 2024-2025年職業(yè)技能:全國高速公路收費(fèi)員從業(yè)資格知識考試題庫與答案
- 阜陽師范大學(xué)《法學(xué)概論》2023-2024學(xué)年期末試卷
- 新版中國食物成分表
- 2024河南鄭州市金水區(qū)事業(yè)單位招聘45人歷年高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
- 湘教版八年級音樂下冊教案全冊
- 食物損失和浪費(fèi)控制程序
評論
0/150
提交評論