版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2.3用公式法求解一元二次方程第二章一元二次方程第1課時(shí)用公式法求解一元二次方程2023/6/81學(xué)習(xí)目標(biāo)1.經(jīng)歷求根公式的推導(dǎo)過程.(難點(diǎn))2.會用公式法解簡單系數(shù)的一元二次方程.(重點(diǎn))3.理解并會計(jì)算一元二次方程根的判別式.4.會用判別式判斷一元二次方程的根的情況.2023/6/82導(dǎo)入新課復(fù)習(xí)引入1.用配方法解一元二次方程的步驟有哪幾步?2.如何用配方法解方程2x2+4x+1=0?2023/6/83導(dǎo)入新課問題:老師寫了4個(gè)一元二次方程讓同學(xué)們判斷它們是否有解,大家都才解第一個(gè)方程呢,小紅突然站起來說出每個(gè)方程解的情況,你想知道她是如何判斷的嗎?2023/6/84講授新課
求根公式的推導(dǎo)一任何一個(gè)一元二次方程都可以寫成一般形式
ax2+bx+c=0
能否也用配方法得出它的解呢?合作探究2023/6/85用配方法解一般形式的一元二次方程
ax2+bx+c=0(a≠0).方程兩邊都除以a
解:移項(xiàng),得配方,得即問題:接下來能用直接開平方解嗎?2023/6/86即一元二次方程的求根公式特別提醒∵a≠0,4a2>0,當(dāng)b2-4ac≥0時(shí),2023/6/87∵a≠0,4a2>0,當(dāng)b2-4ac
<0時(shí),而x取任何實(shí)數(shù)都不能使上式成立.因此,方程無實(shí)數(shù)根.2023/6/88由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c確定.因此,解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0(a≠0),當(dāng)b2-4ac≥0時(shí),將a,b,c代入式子就得到方程的根,這個(gè)式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根.注意用公式法解一元二次方程的前提是:
1.必需是一般形式的一元二次方程:ax2+bx+c=0(a≠0);2.b2-4ac≥0.2023/6/89視頻:求根公式的趣味記憶2023/6/810
公式法解方程二例1
用公式法解方程5x2-4x-12=0解:∵a=5,b=-4,c=-12,b2-4ac=(-4)2-4×5×(-12)=256>0.典例精析2023/6/811例2
解方程:化簡為一般式:解:即:這里的a、b、c的值是什么?2023/6/812例3
解方程:(精確到0.001).解:用計(jì)算器求得:2023/6/813例4
解方程:4x2-3x+2=0因?yàn)樵趯?shí)數(shù)范圍內(nèi)負(fù)數(shù)不能開平方,所以方程無實(shí)數(shù)根.解:2023/6/814要點(diǎn)歸納公式法解方程的步驟1.變形:化已知方程為一般形式;
2.確定系數(shù):用a,b,c寫出各項(xiàng)系數(shù);3.計(jì)算:
b2-4ac的值;4.判斷:若b2-4ac≥0,則利用求根公式求出;若b2-4ac<0,則方程沒有實(shí)數(shù)根.2023/6/815兩個(gè)不相等實(shí)數(shù)根
兩個(gè)相等實(shí)數(shù)根沒有實(shí)數(shù)根兩個(gè)實(shí)數(shù)根判別式的情況
根的情況我們把b2-4ac叫做一元二次方程ax2+bx+c=0根的判別式,通常用符號“”表示,即=
b2-4ac.
>0
=0
<0
≥0一元二次方程根的判別式三2023/6/816按要求完成下列表格:練一練
的值04根的情況有兩個(gè)相等的實(shí)數(shù)根沒有實(shí)數(shù)根有兩個(gè)不相等的實(shí)數(shù)根2023/6/8173.判別根的情況,得出結(jié)論.1.化為一般式,確定a,b,c的值.要點(diǎn)歸納根的判別式使用方法2.計(jì)算的值,確定的符號.2023/6/818例5:已知一元二次方程x2+x=1,下列判斷正確的是()
A.該方程有兩個(gè)相等的實(shí)數(shù)根
B.該方程有兩個(gè)不相等的實(shí)數(shù)根
C.該方程無實(shí)數(shù)根
D.該方程根的情況不確定解析:原方程變形為x2+x-1=0.∵b2-4ac=1-4×1×(-1)=5>0,∴該方程有兩個(gè)不相等的實(shí)數(shù)根,故選B.B2023/6/819方法歸納判斷一元二次方程根的情況的方法:利用根的判別式判斷一元二次方程根的情況時(shí),要先把方程轉(zhuǎn)化為一般形式ax2+bx+c=0(a≠0).b2-4ac>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.b2-4ac=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根.b2-4ac<0時(shí),方程無實(shí)數(shù)根.2023/6/820例6:若關(guān)于x的一元二次方程kx2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是()A.k>-1B.k>-1且k≠0C.k<1D.k<1且k≠0解析:由根的判別式知,方程有兩個(gè)不相等的實(shí)數(shù)根,則b2-4ac>0,同時(shí)要求二次項(xiàng)系數(shù)不為0,即,k≠0.解得k>-1且k≠0,故選B.B2023/6/821例7:不解方程,判斷下列方程的根的情況.(1)3x2+4x-3=0;(2)4x2=12x-9;(3)7y=5(y2+1).解:(1)3x2+4x-3=0,a=3,b=4,c=-3,
∴b2-4ac=32-4×3×(-3)=52>0.∴方程有兩個(gè)不相等的實(shí)數(shù)根.(2)方程化為:4x2-12x+9=0,∴b2-4ac=(-12)2-4×4×9=0.∴方程有兩個(gè)相等的實(shí)數(shù)根.2023/6/822例7:不解方程,判斷下列方程的根的情況.(3)7y=5(y2+1).解:(3)方程化為:5y2-7y+5=0,∴b2-4ac=(-7)2-4×5×5=-51<0.∴方程有兩個(gè)相等的實(shí)數(shù)根.2023/6/8231.解方程:x2+7x–18=0.解:這里a=1,b=7,c=-18.
∵b
2-4ac=72–4×1×(-18)=121>0,即x1=-9,x2=2.當(dāng)堂練習(xí)2023/6/8242.解方程(x
-2)(1-3x)=6.解:去括號,得x–2-3x2+6x=6,化簡為一般式3x2-7x+8=0,這里a=3,b=-7,c=8.
∵b2-4ac=(-7)2–4×3×8=49–96=-47<0,
∴原方程沒有實(shí)數(shù)根.2023/6/8253.解方程:2x2
-
x+3=0解:這里a=2,b=-,c=3.∵b2-4ac=27-4×2×3=3>0,∴
即x1= x2=4.關(guān)于x的一元二次方程有兩個(gè)實(shí)根,則m的取值范圍是
.注意:一元二次方程有實(shí)根,說明方程可能有兩個(gè)不等實(shí)根或兩個(gè)相等實(shí)根兩種情況.解:∴2023/6/8275.不解方程,判斷下列方程的根的情況.(1)2x2+3x-4=0;(2)x2-x+=0;(3)x2-x+1=0.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,
∴b2-4ac=32-4×2×(-4)=41>0.∴方程有兩個(gè)不相等的實(shí)數(shù)根.(2)x2-x+=0,a=1,b=-1,c=.∴b2-4ac=(-1)2-4×1×=0.∴方程有兩個(gè)相等的實(shí)數(shù)根.2023/6/828(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程無實(shí)數(shù)根.(3)x2-x+1=0.2023/6/8296.不解方程,判別關(guān)于x的方程的根的情況.解:所以方程有兩個(gè)實(shí)數(shù)根.2023/6/830能力提升:在等腰△ABC
中,三邊分別為a,b,c,其中a=5,若關(guān)于x的方程x2+(b+2)x+6-b=0有兩個(gè)相等的實(shí)數(shù)根,求△ABC
的周長.解:關(guān)于x的方程x2+(b+2)x+6-b=0有兩個(gè)相等的實(shí)數(shù)根,所以Δ=b2-4ac=(b-2)2-4(6-b)=b2+8b-20=0.所以b=-10或b=2.將b=-10代入原方程得x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨夏現(xiàn)代職業(yè)學(xué)院《鍍涂層質(zhì)量檢測技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 麗江職業(yè)技術(shù)學(xué)院《合唱排練與指揮》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇財(cái)經(jīng)職業(yè)技術(shù)學(xué)院《面向?qū)ο蟪绦蛟O(shè)計(jì)(Java)》2023-2024學(xué)年第一學(xué)期期末試卷
- 華北水利水電大學(xué)《小學(xué)教育教學(xué)敘事研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 遵義師范學(xué)院《黑白木刻版畫基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶理工職業(yè)學(xué)院《礦床學(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江特殊教育職業(yè)學(xué)院《光接入技術(shù)與數(shù)字通信課程實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國政法大學(xué)《運(yùn)動控制導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州信息工程職業(yè)學(xué)院《城市規(guī)劃原理實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 長沙電力職業(yè)技術(shù)學(xué)院《跨文化傳播》2023-2024學(xué)年第一學(xué)期期末試卷
- 信息安全意識培訓(xùn)課件
- 2024年項(xiàng)目投資計(jì)劃書(三篇)
- 配電安規(guī)課件
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 瀝青路面施工安全培訓(xùn)
- 機(jī)電設(shè)備安裝施工及驗(yàn)收規(guī)范
- 倉庫安全培訓(xùn)考試題及答案
- 第六單元 中華民族的抗日戰(zhàn)爭 教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版八年級歷史上冊
- 初中古詩文言文背誦內(nèi)容
- 天然氣分子篩脫水裝置吸附計(jì)算書
- 檔案管理項(xiàng)目 投標(biāo)方案(技術(shù)方案)
評論
0/150
提交評論