高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)分析2023_第1頁(yè)
高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)分析2023_第2頁(yè)
高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)分析2023_第3頁(yè)
高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)分析2023_第4頁(yè)
高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)分析2023_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)分析2023高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)分析1異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線異面直線性質(zhì):既不平行,又不相交.異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直.求異面直線所成角步驟:A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來(lái)求角(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).(8)空間直線與平面之間的位置關(guān)系直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).三種位置關(guān)系的符號(hào)表示:aαa∩α=Aaα(9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);αβ相交——有一條公共直線.α∩β=b2、空間中的平行問(wèn)題(1)直線與平面平行的判定及其性質(zhì)線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平線線平行線面平行線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行.線面平行線線平行(2)平面與平面平行的判定及其性質(zhì)兩個(gè)平面平行的判定定理(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行(線面平行→面面平行),(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行.(線線平行→面面平行),(3)垂直于同一條直線的兩個(gè)平面平行,兩個(gè)平面平行的性質(zhì)定理(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行.(面面平行→線面平(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行.(面面平行→線線平行)3、空間中的垂直問(wèn)題(1)線線、面面、線面垂直的定義兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直.平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直.(2)垂直關(guān)系的判定和性質(zhì)定理線面垂直判定定理和性質(zhì)定理判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.面面垂直的判定定理和性質(zhì)定理判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.4、空間角問(wèn)題(1)直線與直線所成的角兩平行直線所成的角:規(guī)定為.兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.(2)直線和平面所成的角平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角.求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”.在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,在解題時(shí),注意挖掘題設(shè)中主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.(3)二面角和二面角的平面角二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.直二面角:平面角是直角的二面角叫直二面角.兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角求二面角的方法定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)分析21.不等式證明的依據(jù)(2)不等式的性質(zhì)(略)(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))2.不等式的證明方法(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.用比較法證明不等式的步驟是:作差——變形——判斷符號(hào).(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過(guò)的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)分析3集合的分類:(1)按元素屬性分類,如點(diǎn)集,數(shù)集。(2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集關(guān)于集合的概念:(1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。(2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。(3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的'點(diǎn)一一對(duì)應(yīng)的數(shù)。)1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫(xiě)出只有集合內(nèi)的元素x才具有的性

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論