版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省洛陽市五頭中學(xué)高一數(shù)學(xué)理期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.(5分)下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為() A. y=x+1 B. y=﹣x2 C. D. y=x|x|參考答案:D考點(diǎn): 函數(shù)奇偶性的判斷;函數(shù)單調(diào)性的判斷與證明.專題: 探究型.分析: 對(duì)于A,非奇非偶;對(duì)于B,是偶函數(shù);對(duì)于C,是奇函數(shù),但不是增函數(shù);對(duì)于D,令f(x)=x|x|=,可判斷函數(shù)既是奇函數(shù)又是增函數(shù),故可得結(jié)論.解答: 對(duì)于A,非奇非偶,是R上的增函數(shù),不符合題意;對(duì)于B,是偶函數(shù),不符合題意;對(duì)于C,是奇函數(shù),但不是增函數(shù);對(duì)于D,令f(x)=x|x|,∴f(﹣x)=﹣x|﹣x|=﹣f(x);∵f(x)=x|x|=,∴函數(shù)是增函數(shù)故選D.點(diǎn)評(píng): 本題考查函數(shù)的性質(zhì),考查函數(shù)的奇偶性與單調(diào)性的判斷,屬于基礎(chǔ)題.2.已知等比數(shù)列{an}滿足,,則()A. B.-2 C.或-2 D.2參考答案:C【分析】由等比數(shù)列的性質(zhì)可知,a5?a8=a6?a7,然后結(jié)合a5+a8,可求a5,a8,由q3可求.【詳解】由等比數(shù)列的性質(zhì)可知,,∵,∴,,或,,∴或.故選:C.【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)試題.3.若,則的值為(
)
A.
B.
C.
D.參考答案:B略4.已知定義在上的函數(shù)滿足:且,,則方程在區(qū)間[-3,7]上的所有實(shí)根之和為(
)A.14
B.12
C.11
D.7參考答案:C5.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為(
)A.
B.
C.
D.參考答案:A6.設(shè)函數(shù)f(x)=sin(2x--),x?R,則f(x)是(
)A.最小正周期為p的奇函數(shù)
B.最小正周期為的奇函數(shù)
C.最小正周期為的偶函數(shù)
D.最小正周期為p的偶函數(shù)
參考答案:D略7.已知定義在R上的函數(shù)是奇函數(shù)且滿足,,數(shù)列{an}滿足,且,(其中Sn為{an}的前n項(xiàng)和).則()A.3 B.-2 C.-3 D.2參考答案:A由奇函數(shù)滿足可知該函數(shù)是周期為的奇函數(shù),由遞推關(guān)系可得:,兩式做差有:,即,即數(shù)列構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,故:,綜上有:,,則:.本題選擇A選項(xiàng).8.設(shè)函數(shù),則
()A. B.3 C. D.參考答案:D略9.為測(cè)量某塔AB的高度,在一幢與塔AB相距20m的樓頂處測(cè)得塔頂A的仰角為30°,測(cè)得塔基B的俯角為45°,那么塔AB的高度是()參考答案:A10.如圖,在一根長(zhǎng)11cm,外圓周長(zhǎng)6cm的圓柱形柱體外表面,用一根細(xì)鐵絲纏繞,組成10個(gè)螺旋,如果鐵絲的兩端恰好落在圓柱的同一條母線上,則鐵絲長(zhǎng)度的最小值為(A)
61cm
(B)cm
(C)cm
(D)10cm參考答案:A二、填空題:本大題共7小題,每小題4分,共28分11.與的等比中項(xiàng)是
參考答案:±412.(5分)已知cosθ?tanθ<0,那么角θ是第
象限角.參考答案:第三或第四考點(diǎn): 象限角、軸線角;任意角的三角函數(shù)的定義;弦切互化.專題: 閱讀型.分析: 本題考查了正、余弦函數(shù)與正切函數(shù)轉(zhuǎn)化關(guān)系以及由三角函數(shù)值判斷角所在的象限.根據(jù)cosθ?tanθ<0,結(jié)合同角三角函數(shù)關(guān)系運(yùn)算,及三角函數(shù)在各象限中的符號(hào),我們不難得到結(jié)論.解答: 且cosθ≠0∴角θ是第三或第四象限角故答案為:第三或第四點(diǎn)評(píng): 準(zhǔn)確記憶三角函數(shù)在不同象限內(nèi)的符號(hào)是解決本題的關(guān)鍵,其口決是“第一象限全為正,第二象限負(fù)余弦,第三象限負(fù)正切,第四象限負(fù)正弦.”13.若函數(shù)y=是函數(shù)的反函數(shù),則
。參考答案:0略14.已知向量,滿足=(1,),?(﹣)=﹣3,則向量在方向上的投影為.參考答案:
【考點(diǎn)】平面向量數(shù)量積的運(yùn)算.【分析】求出向量b的模,向量a,b的數(shù)量積,再由向量在方向上的投影,計(jì)算即可得到.【解答】解:=(1,),則||==2,?(﹣)=﹣3,則=﹣3=4﹣3=1,即有向量在方向上的投影為=.故答案為:.15.按如圖所示的算法框圖運(yùn)算,若輸入x=8,則輸出k=__________;若輸出k=2,則輸入x的取值范圍是__________.參考答案:4,(28,57].16.已知函數(shù),則
.參考答案:-117.已知函數(shù)圖象上的一個(gè)最高點(diǎn)與相鄰一個(gè)最低點(diǎn)之間的距離是5,則
.參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(8分)在正方體ABCD﹣A1B1C1D1中,求證:(1)平面A1BD∥平面CB1D1;(2)M、N分別為棱BC和棱CC1的中點(diǎn),求異面直線AC和MN所成的角.參考答案:考點(diǎn): 平面與平面平行的判定;異面直線及其所成的角.專題: 空間位置關(guān)系與距離;空間角.分析: (1)連接B1C和D1C,由A1D∥B1C,A1B∥D1C,能證明平面CB1D1∥平面A1BD.(2)利用正方體的性質(zhì)容易得到AD1∥MN,所以∠CAD1為異面直線所成的角,連接CD1,得到△CAD1為等邊三角形,得到所求.解答: (1)證明:連接B1C和D1C,∵A1D∥B1C,A1B∥D1C,A1D∩A1B=A1,A1D?平面A1BD,A1B?平面A1BD,B1C?平面CB1D1,D1C?平面CB1D1,∴平面A1BD∥平面CB1D1.(2)因?yàn)閹缀误w為正方體,連接AD1,D1C,所以∠CAD1為異面直線所成的角,又△CAD1為等邊三角形,所以異面直線AC和MN所成的角60°點(diǎn)評(píng): 本題考查兩平面平行的證明,考查異面直線所成的角的求法,關(guān)鍵是將面面平行轉(zhuǎn)化為線線平行解答,將空間角轉(zhuǎn)化為平面角解答,注意轉(zhuǎn)化能力和空間思維能力的培養(yǎng).19.(12分)如圖,已知在底面為正方形是四棱錐P﹣ABCD中,PA⊥底面ABCD,M為線段PA上一動(dòng)點(diǎn),E,F(xiàn)分別是線段BC、CD的中點(diǎn),EF與AC交于點(diǎn)N.(1)求證:平面PAC⊥平面MEF;(2)若PC∥平面MEF,試求PM:MA的值.參考答案:考點(diǎn): 直線與平面平行的判定;平面與平面垂直的判定.專題: 證明題;空間位置關(guān)系與距離.分析: (1)由已知可證明PA⊥EF,由底面ABCD為正方形,E,F(xiàn)分別是線段BC、CD的中點(diǎn),EF與AC交于點(diǎn)N,可證明AC⊥EF,從而可得EF⊥平面PAC,又EF?平面MEF,即可判定平面PAC⊥平面MEF;(2)連接MN,由PC∥平面MEF,且MN?平面MEF,MN?平面APC,可得PC∥MN,從而有,設(shè)BC=2,則可得EC=1,AC=,EN=,CN=,從而可求PM:MA的值.解答: (1)∵PA⊥底面ABCD,∴PA⊥EF,∵底面ABCD為正方形,E,F(xiàn)分別是線段BC、CD的中點(diǎn),EF與AC交于點(diǎn)N.∴,設(shè)BC=2,可得EC=1,EN=,可解得AC⊥EF,∴EF⊥平面PAC,∵EF?平面MEF,∴平面PAC⊥平面MEF;(2)連接MN,∵PC∥平面MEF,且MN?平面MEF,MN?平面APC,∴PC∥MN,∴,∵由(1)可得設(shè)BC=2,則EC=1,AC=,EN=,故CN==,∴解得:==.點(diǎn)評(píng): 本題主要考查了直線與平面平行的判定,平面與平面垂直的判定,熟練應(yīng)用相關(guān)判定定理和性質(zhì)定理是解題的關(guān)鍵,屬于基本知識(shí)的考查.20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)(x∈R)的部分圖象如圖所示.(Ⅰ)求函數(shù)f(x)的解析式并求函數(shù)f(x)的單調(diào)遞增區(qū)間;(Ⅱ)求函數(shù)f(x)的最小值并指出函數(shù)f(x)取最小值時(shí)相應(yīng)的x的值.參考答案:【考點(diǎn)】HK:由y=Asin(ωx+φ)的部分圖象確定其解析式;HW:三角函數(shù)的最值.【分析】(Ⅰ)由圖形可確定A,周期T,從而可得ω的值,再由f()=2,得2×+φ=+2kπ(k∈Z),進(jìn)一步結(jié)合條件可得φ的值,即可解得f(x)的解析式,由2kπ﹣≤2x+≤2kπ+,可得函數(shù)f(x)的單調(diào)遞增區(qū)間;(Ⅱ)由正弦函數(shù)的圖象和性質(zhì),由2x+=2kπ﹣(k∈Z),即可解得函數(shù)f(x)的最小值并指出函數(shù)f(x)取最小值時(shí)相應(yīng)的x的值.【解答】解:(Ⅰ)由函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)(x∈R)的部分圖象可得A=2,最小正周期T=2()=π,得ω=2,可得函數(shù)f(x)的解析式為f(x)=2sin(2x+φ),又f()=2,所以sin(+φ)=1,由于|φ|<,可得φ=,所以函數(shù)f(x)的解析式為:f(x)=2sin(2x+)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由于2kπ﹣≤2x+≤2kπ+,可得kπ﹣≤x≤kπ+(k∈Z),所以函數(shù)f(x)的單調(diào)遞增區(qū)間為:(k∈Z),﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)函數(shù)f(x)的最小值為﹣2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣函數(shù)f(x)取最小值﹣2時(shí),有2x+=2kπ﹣(k∈Z),可得:x=kπ﹣(k∈Z),所以函數(shù)f(x)取最小值﹣2時(shí)相應(yīng)的x的值是:x=kπ﹣(k∈Z).﹣﹣﹣﹣﹣﹣﹣﹣21.(13分)平面內(nèi)有向量=(1,7),=(5,1),=(2,1),點(diǎn)M(x,y)為直線OP上的一動(dòng)點(diǎn).(1)用只含y的代數(shù)式表示的坐標(biāo);(2)求?的最小值,并寫出此時(shí)的坐標(biāo).參考答案:22.如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.(1)求證:平面ABC1⊥平面A1ACC1;(2)設(shè)D是線段BB1的中點(diǎn),求三棱錐D﹣ABC1的體積.參考答案:【考點(diǎn)】棱柱、棱錐、棱臺(tái)的體積;平面與平面垂直的判定.【專題】綜合題;轉(zhuǎn)化思想;綜合法;立體幾何.【分析】(1)證明A1C⊥面ABC1,即可證明:平面ABC1⊥平面A1ACC1;(2)證明AC⊥面ABB1A1,利用等體積轉(zhuǎn)換,即可求三棱錐D﹣ABC1的體積.【解答】(1)證明:在直三棱錐ABC﹣A1B1C1中,有A1A⊥面ABC,而AB?面ABC,∴A1A⊥AB,∵A1A=AC,∴A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇州站施工組織設(shè)計(jì)方案(幕墻)
- 專業(yè)化海路物流合作合同(2024版)版B版
- 2025年度購物中心場(chǎng)地合作開發(fā)及商業(yè)運(yùn)營合同4篇
- 二零二四圖書購置項(xiàng)目與圖書館無障礙閱讀服務(wù)合同3篇
- 2025年度智能攤位管理系統(tǒng)開發(fā)與實(shí)施合同4篇
- 2025年度劇本創(chuàng)作與版權(quán)授權(quán)管理合同3篇
- 二零二五版4S店汽車銷售合同樣本圖2篇
- 2025年度農(nóng)產(chǎn)品質(zhì)量安全追溯體系服務(wù)合同4篇
- 2024藥店負(fù)責(zé)人任期藥店信息化建設(shè)與升級(jí)聘用合同3篇
- 2025年度城市景觀測(cè)量勞務(wù)分包執(zhí)行合同4篇
- 衡水市出租車駕駛員從業(yè)資格區(qū)域科目考試題庫(全真題庫)
- 護(hù)理安全用氧培訓(xùn)課件
- 《三國演義》中人物性格探析研究性課題報(bào)告
- 注冊(cè)電氣工程師公共基礎(chǔ)高數(shù)輔導(dǎo)課件
- 土方勞務(wù)分包合同中鐵十一局
- 乳腺導(dǎo)管原位癌
- 冷庫管道應(yīng)急預(yù)案
- 司法考試必背大全(涵蓋所有法律考點(diǎn))
- 公共部分裝修工程 施工組織設(shè)計(jì)
- 《學(xué)習(xí)教育重要論述》考試復(fù)習(xí)題庫(共250余題)
- 裝飾裝修施工及擔(dān)保合同
評(píng)論
0/150
提交評(píng)論