版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省成都石室天府2024學年數(shù)學高二上期末調研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的前n項和為,則“數(shù)列是等比數(shù)列”為“存在,使得”的()A.既不充分也不必要條件 B.必要不充分條件C.充要條件 D.充分不必要條件2.已知三棱柱中,,,D點是線段上靠近A的一個三等分點,則()A. B.C. D.3.若是函數(shù)的一個極值點,則的極大值為()A. B.C. D.4.過點且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.5.已知F是雙曲線C:的一個焦點,點P在C的漸近線上,O是坐標原點,,則的面積為()A.1 B.C. D.6.過點(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=07.直線分別與曲線,交于,兩點,則的最小值為()A. B.1C. D.28.函數(shù)在的圖象大致為()A. B.C D.9.某口罩生產(chǎn)商為了檢驗產(chǎn)品質量,從總體編號為001,002,003,…,499,500的500盒口罩中,利用下面的隨機數(shù)表選取10個樣本進行抽檢,選取方法是從下面的隨機數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個樣本的編號為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.32510.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B.C. D.11.點分別為橢圓左右兩個焦點,過的直線交橢圓與兩點,則的周長為()A.32 B.16C.8 D.412.設直線與雙曲線(,)的兩條漸近線分別交于,兩點,若點滿足,則該雙曲線的離心率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有一組數(shù)據(jù):,其平均數(shù)是,則其方差是________.14.若滿足約束條件,則的最小值為________.15.已知,,若,則_________.16.點到直線的距離為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,中,且,將沿中位線EF折起,使得,連結AB,AC,M為AC的中點.(1)證明:平面ABC;(2)求二面角的余弦值.18.(12分)已知點F為拋物線的焦點,點在拋物線上,且.(1)求該拋物線的方程;(2)若點A在第一象限,且拋物線在點A處的切線交y軸于點M,求的面積.19.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面的距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由20.(12分)2022北京冬奧會即將開始,北京某大學鼓勵學生積極參與志愿者的選拔.某學院有6名學生通過了志愿者選拔,其中4名男生,2名女生(1)若從中挑選2名志愿者,求入選者正好是一名男生和一名女生的概率;(2)若從6名志愿者中任選3人負責滑雪項目服務崗位,那么現(xiàn)將6人分為A、B兩組進行滑雪項目相關知識及志愿者服務知識競賽,共賽10局.A、B兩組分數(shù)(單位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139從統(tǒng)計學角度看,應選擇哪個組更合適?理由是什么?21.(12分)如圖,在半徑為6m的圓形O為圓心鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A,C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側面不計剪裁和拼接損耗,設矩形的邊長|AB|xm,圓柱的體積為Vm3.(1)寫出體積V關于x的函數(shù)關系式,并指出定義域;(2)當x為何值時,才能使做出的圓柱形罐子的體積V最大最大體積是多少?22.(10分)已知O為坐標原點,、為橢圓C的左、右焦點,,P為橢圓C的上頂點,以P為圓心且過、的圓與直線相切(1)求橢圓C的標準方程;(2)若過點作直線l,交橢圓C于M,N兩點(l與x軸不重合),在x軸上是否存在一點T,使得直線TM與TN的斜率之積為定值?若存在,請求出所有滿足條件的點T的坐標;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】由充分必要條件的定義,結合等比數(shù)列的通項公式和求和公式,以及利用特殊數(shù)列的分法,即可求解.【題目詳解】由題意,數(shù)列是等比數(shù)列,設等比數(shù)列的公比為,則,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,當,可得,此時數(shù)列不是等比數(shù)列,即必要性不成立,所以數(shù)列是等比數(shù)列為存在,使得的充分不必要條件.故選:D.2、A【解題分析】在三棱柱中,,轉化為結合已知條件計算即可.【題目詳解】在三棱柱中,滿足,且,則,,D點是線段上靠近A的一個三等分點,則,由向量的減法運算得,.故選:A【題目點撥】關鍵點點睛:在三棱柱中,,由向量的減法運算得,再展開利用數(shù)量積運算.3、D【解題分析】先對函數(shù)求導,由已知,先求出,再令,并判斷函數(shù)在其左右兩邊的單調性,從而確定極大值點,然后帶入原函數(shù)即可完成求解.【題目詳解】因為,,所以,所以,,令,解得或,所以當,,單調遞增;時,,單調遞減;當,,單調遞增,所以的極大值為故選:D4、C【解題分析】設與雙曲線有相同漸近線的雙曲線方程為,代入點的坐標,求出的值,即可的解.【題目詳解】設與雙曲線有相同漸近線的雙曲線方程為,代入點,得,解得,所以所求雙曲線方程為,即故選:C.5、B【解題分析】根據(jù)給定條件求出,再利用余弦定理求出即可計算作答.【題目詳解】雙曲線C:中,,其漸近線,它與x軸的夾角為,即,在中,,由余弦定理得:,即,整理得:,解得,所以面積為.故選:B6、A【解題分析】當直線被圓截得的最弦長最大時,直線要經(jīng)過圓心,即圓心在直線上,然后根據(jù)兩點式方程可得所求【題目詳解】由題意得,圓的方程為,∴圓心坐標為∵直線被圓截得的弦長最大,∴直線過圓心,又直線過點(-2,1),所以所求直線的方程為,即故選:A7、B【解題分析】設,,,,得到,用導數(shù)法求解.【題目詳解】解:設,,,,則,,,令,則,函數(shù)在上單調遞減,在上單調遞增,時,函數(shù)的最小值為1,故選:B8、D【解題分析】函數(shù)|在[–2,2]上是偶函數(shù),其圖象關于軸對稱,因為,所以排除選項;當時,有一零點,設為,當時,為減函數(shù),當時,為增函數(shù)故選:D.9、A【解題分析】按隨機數(shù)表法逐個讀取數(shù)字即可得到答案.【題目詳解】根據(jù)隨機數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個樣本的編號為148.故選:A.10、C【解題分析】利用正方體中,,將問題轉化為求共面直線與所成角的正切值,在中進行計算即可.【題目詳解】在正方體中,,所以異面直線與所成角為,設正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【題目點撥】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關系,找到(或構造)所求角所在的三角形;③求出三邊或三邊比例關系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應的余弦取絕對值即為直線所成角的余弦值.11、B【解題分析】由題意結合橢圓的定義可得,而的周長等于,從而可得答案【題目詳解】解:由得,由題意得,所以的周長等于,故選:B12、C【解題分析】先求出,的坐標,再求中點坐標,利用點滿足,可得,從而求雙曲線的離心率.【題目詳解】解:由雙曲線方程可知,漸近線為,分別于聯(lián)立,解得:,,所以中點坐標為,因為點滿足,所以,所以,即,所以.故選:C.【題目點撥】本題考查雙曲線的離心率,考查直線與雙曲線的位置關系,考查學生的計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解題分析】先按照平均數(shù)算出a,再按照方差的定義計算即可。【題目詳解】∵,所以,方差,故答案為:2.14、5【解題分析】作出可行域,作直線,平移該直線可得最優(yōu)解【題目詳解】作出可行域,如圖內部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當直線過點時取得最小值5故答案為:515、【解題分析】由題意,,利用向量數(shù)量積的坐標運算可得,然后利用定積分性質可得,原式,最后利用微積分基本定理計算,,利用定積分的幾何意義計算,即可得答案.【題目詳解】解:因為,,且,所以,解得,所以====.故答案為:.16、【解題分析】直接利用點到直線的距離公式計算即可.【題目詳解】點到直線的距離為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)由勾股定理以及等腰三角形的性質得出,,再由線面垂直的判定證明即可;(2)以點為坐標原點,建立空間直角坐標系,由向量法得出面面角.【小問1詳解】設,則,,平面平面,連接,,,,,即又,平面ABC【小問2詳解】,以點為坐標原點,建立如下圖所示的空間直角坐標系設平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.18、(1);(2)10.【解題分析】(1)由根據(jù)拋物線的定義求出可得拋物線方程;(2)求出拋物線過點A的切線,得出點M的坐標即可求三角形面積.【小問1詳解】由拋物線的定義可知,即,拋物線的方程為.【小問2詳解】,且A在第一象限,,即A(4,4),顯然切線的斜率存在,故可設其方程為,由,消去得,即,令,解得,切線方程為.令x=0,得,即,又,,.19、(1)(2)存在,【解題分析】(1)根據(jù)題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設,然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結果小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,中,,所以邊上的高為,所以,在梯形中,,設點到平面的距離為,因,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標系,則,設,則,設平面的法向量為,則,令,則,設平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以20、(1)(2)答案見詳解【解題分析】(1):把4名男生和2名女生編號后用列舉法寫出任選2名的所有基本事件,同時可得出,兩人是一男一女的基本事件,計數(shù)后可計算概率;(2):求出兩組數(shù)據(jù)的均值和方差,比較可得【小問1詳解】設4名男生分別用A,B,C,D表示:2名女生分別用1,2表示.基本事件為:,,,,,,,,,,,,共15種,所以所求概率為;【小問2詳解】A組數(shù)據(jù)的平均數(shù),B組數(shù)據(jù)的平均數(shù),A組數(shù)據(jù)的方差,B組數(shù)據(jù)的方差,所以選擇A隊.理由:A、B兩隊平均數(shù)相同,且,A組成績波動小21、(1),;(2)時,最大值為m3.【解題分析】(1)連接,在中,由,利用勾股定理可得,設圓柱底面半徑為,求出.利用(其中即可得出;(2)利用導數(shù),求出V的單調性,即可得出結論【小問1詳解】連接,在中,,,設圓柱底面半徑為,則,即,,其中【小問2詳解】由及,得,列表如下:,0↗極大值↘∴當時,有極大值,也是最大值為m322、(1);(2)存在;.【解題分析】(1)根據(jù)給定條件求出a,c,b即可作答.(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年高端裝備制造技術與專利許可合同
- 2024年甲醇分銷合同
- 2024年餐飲業(yè)標準設備租賃合同模板版
- 2025年度環(huán)保設備采購與安裝合同6篇
- 2024年限定版圍墻修繕合作協(xié)議版B版
- 2025年度環(huán)保產(chǎn)業(yè)技術轉移與轉化合同3篇
- 2024年版泵車施工廢棄物處理合同
- 2024年高端裝備制造業(yè)原材料采購合同范本3篇
- 2024年職工停薪留職期間工作績效考核合同3篇
- 2024高端精密儀器制造與維修服務合同
- 雙高建設的路徑設計與實施方案
- 2024年上海市中考英語試題和答案
- 人工智能:AIGC基礎與應用 課件 03模塊三AIGC賦能辦公應用
- 醫(yī)院純水系統(tǒng)施工方案
- 各類骨折病人體位護理
- 肺部感染的護理查房課件
- 三基護理練習題庫(附答案)
- 臨時施工單位安全協(xié)議書
- 網(wǎng)絡評論員培訓
- 《數(shù)字信號處理原理與實現(xiàn)(第3版)》全套教學課件
- 大型醫(yī)院多院區(qū)一體化基礎信息平臺建設方案
評論
0/150
提交評論