版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024學(xué)年湖南省瀏陽一中高二上數(shù)學(xué)期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在如圖所示的莖葉圖中,若甲組數(shù)據(jù)的眾數(shù)為16,則乙組數(shù)據(jù)的平均數(shù)為()A.12 B.10C.8 D.62.已知直線:與雙曲線的兩條漸近線分別相交于A、B兩點(diǎn),若C為直線與y軸的交點(diǎn),且,則k等于()A.4 B.6C. D.3.已知數(shù)列中,,則()A. B.C. D.4.已知拋物線的焦點(diǎn)為,拋物線上的兩點(diǎn),均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.5.以,為焦點(diǎn),且經(jīng)過點(diǎn)的橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.6.將點(diǎn)的極坐標(biāo)化成直角坐標(biāo)是(
)A. B.C. D.7.程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對(duì)推動(dòng)漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個(gè).問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)為()A.120 B.84C.56 D.288.在圓上任取一點(diǎn)P,過點(diǎn)P作x軸的垂線段PD,D為垂足,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡記為C,則曲線C的離心率為()A. B.C. D.9.已知橢圓的左右焦點(diǎn)分別為,直線與C相交于M,N兩點(diǎn)(其中M在第一象限),若M,,N,四點(diǎn)共圓,且直線傾斜角不小于,則橢圓C的離心率e的取值范圍是()A. B.C. D.10.若直線與圓:相切,則()A.-2 B.-2或6C.2 D.-6或211.(一)單項(xiàng)選擇函數(shù)在處的導(dǎo)數(shù)等于()A.0 B.C.1 D.e12.函數(shù),的最小值為()A.2 B.3C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長為2,側(cè)棱長為,則與側(cè)面所成角的正弦值為______14.已知直線l是拋物線()的準(zhǔn)線,半徑為的圓過拋物線的頂點(diǎn)O和焦點(diǎn)F,且與l相切,則拋物線C的方程為___________;若A為C上一點(diǎn),l與C的對(duì)稱軸交于點(diǎn)B,在中,,則的值為___________.15.?dāng)?shù)列滿足,,則___________.16.如果方程表示焦點(diǎn)在軸上的橢圓,那么實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且B,A,C成等差數(shù)列.(1)求A的大??;(2)若,且的面積為,求的周長.19.(12分)已知函數(shù)在處取得極值(1)若對(duì)任意正實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍;(2)討論函數(shù)的零點(diǎn)個(gè)數(shù)20.(12分)已知圓經(jīng)過,且圓心C在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線:與圓存在公共點(diǎn),求實(shí)數(shù)的取值范圍21.(12分)已知橢圓的離心率為,右焦點(diǎn)為F,點(diǎn)A(a,0),且|AF|=1(1)求橢圓C的方程;(2)過點(diǎn)F的直線l(不與x軸重合)交橢圓C于點(diǎn)M,N,直線MA,NA分別與直線x=4交于點(diǎn)P,Q,求∠PFQ的大小22.(10分)已知橢圓的中心在原點(diǎn),焦點(diǎn)為,,且長軸長為4.(1)求橢圓的方程;(2)直線與橢圓相交于A,兩點(diǎn),求弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】根據(jù)眾數(shù)的概念,求得的值,再根據(jù)平均數(shù)的計(jì)算公式,即可求解.【題目詳解】由題意,甲組數(shù)據(jù)的眾數(shù)為16,得,所以乙組數(shù)據(jù)的平均數(shù)為故選:A.2、D【解題分析】先求出雙曲線的漸近線方程,然后分別與直線聯(lián)立,求出A、B兩點(diǎn)的橫坐標(biāo),再利用可求解.【題目詳解】由雙曲線方程可知其漸近線方程為:,當(dāng)時(shí),與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D3、D【解題分析】由數(shù)列的遞推公式依次去求,直到求出即可.【題目詳解】由,可得,,,故選:D.4、C【解題分析】作垂直準(zhǔn)線于,垂直準(zhǔn)線于,作于,結(jié)合拋物線定義得出斜率為可求.【題目詳解】如圖:作垂直準(zhǔn)線于,垂直準(zhǔn)線于,作于,因?yàn)?,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.5、B【解題分析】根據(jù)焦點(diǎn)在x軸上,c=1,且過點(diǎn),用排除法可得.也可待定系數(shù)法求解,或根據(jù)橢圓定義求2a可得.【題目詳解】因?yàn)榻裹c(diǎn)在x軸上,所以C不正確;又因?yàn)閏=1,故排除D;將代入得,故A錯(cuò)誤,所以選B.故選:B6、A【解題分析】本題考查極坐標(biāo)與直角坐標(biāo)互化由點(diǎn)M的極坐標(biāo),知極坐標(biāo)與直角坐標(biāo)的關(guān)系為,所以的直角坐標(biāo)為即故正確答案為A7、B【解題分析】按照框圖中程序,逐步執(zhí)行循環(huán),即可求得答案.【題目詳解】第一次循環(huán):,,第二次循環(huán):,,第三次循環(huán):,,第四次循環(huán):,,第五次循環(huán):,,第六次循環(huán):,,第七次循環(huán):,,退出循環(huán),輸出.故選:B8、B【解題分析】設(shè),,則由題意可得,代入圓方程中化簡可得曲線C的方程,從而可求出離心率【題目詳解】設(shè),,則,得,所以,因?yàn)辄c(diǎn)在圓上,所以,即,所以點(diǎn)的軌跡方程為,所以,則所以離心率為,故選:B9、B【解題分析】設(shè)橢圓的半焦距為c,由橢圓的中心對(duì)稱性和圓的性質(zhì)得以為直徑的圓與橢圓C有公共點(diǎn),則有以,再根據(jù)直線傾斜角不小于得,由橢圓的定義得,由此可求得橢圓離心率的范圍.【題目詳解】解:設(shè)橢圓的半焦距為c,由橢圓的中心對(duì)稱性和M,,N,四點(diǎn)共圓得,四邊形必為一個(gè)矩形,即以為直徑的圓與橢圓C有公共點(diǎn),所以,所以,所以,因?yàn)橹本€傾斜角不小于,所以直線傾斜角不小于,所以,化簡得,,因?yàn)?,所以,所以,,又,因?yàn)?,所以,所以,所以,所?故選:B.10、B【解題分析】利用圓心到直線距離等于半徑得到方程,解出的值.【題目詳解】圓心為,半徑為,由題意得:,解得:或6.故選:B11、B【解題分析】利用導(dǎo)數(shù)公式求解.【題目詳解】因?yàn)楹瘮?shù),所以,所以,故選;B12、B【解題分析】求導(dǎo)函數(shù),分析單調(diào)性即可求解最小值【題目詳解】由,得,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增∴當(dāng)時(shí),取得最小值,且最小值為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】作圖,考慮底面是正三角形,按照線面夾角的定義構(gòu)造直角三角形即可.【題目詳解】依題意,作圖如下,取的中點(diǎn)G,連結(jié),∵是正三角形,∴,,又∵是正三棱柱,∴底面,∴,即平面,,與平面的夾角=,在中,,故答案為:.14、①.②.【解題分析】(1)由題意得:圓的圓心橫坐標(biāo)為,半徑為,列方程,即可得到答案;(2)由正弦定理得,從而求得直線的方程,求出點(diǎn)的坐標(biāo),即可得到答案;【題目詳解】由題意得:圓的圓心橫坐標(biāo)為,半徑為,,拋物線C的方程為;設(shè)到準(zhǔn)線的距離為,,,,,代入,解得:,,,故答案為:;15、【解題分析】根據(jù)題中所給的遞推式得到數(shù)列具有周期性,進(jìn)而得到結(jié)果.【題目詳解】根據(jù)題中遞推式知,可知數(shù)列具有周期性,周期為3,因?yàn)楣使蚀鸢笧椋?6、【解題分析】化簡橢圓的方程為標(biāo)準(zhǔn)形式,列出不等式,即可求解.【題目詳解】由題意,方程可化為,因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,可得,解得,實(shí)數(shù)的取值范圍是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2).【解題分析】(1)求出函數(shù)的定義域?yàn)?,求得,分、、三種情況討論,分析導(dǎo)數(shù)的符號(hào)變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)構(gòu)造函數(shù),由題意可知恒成立,對(duì)實(shí)數(shù)分和兩種情況討論,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,驗(yàn)證是否成立,由此可得出實(shí)數(shù)的取值范圍.【題目詳解】(1)函數(shù)的定義域?yàn)椋?(i)當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;(ii)當(dāng)時(shí),令得.若,則;若,則.①當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;②當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減;綜上,可得,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)設(shè),,則.當(dāng)時(shí),單調(diào)遞增,則.所以,函數(shù)在上單調(diào)遞增,且.當(dāng)時(shí),,于是,函數(shù)在上單調(diào)遞增,恒成立,符合題意;當(dāng)時(shí),由于,,,所以,存在,使得.當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增.故,不符合題意,綜上所述,實(shí)數(shù)的取值范圍是.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問題,考查分類討論思想的應(yīng)用,屬于難題.18、(1)(2)【解題分析】(1)由等差數(shù)列的性質(zhì)結(jié)合內(nèi)角和定理得出A的大??;(2)先由余弦定理,結(jié)合,,得到的關(guān)系式,再由的面積為,得到的關(guān)系式,兩式聯(lián)立可求出,進(jìn)而可確定結(jié)果.【小問1詳解】因?yàn)锽,A,C成等差數(shù)列,所以,所以.【小問2詳解】因?yàn)?,,由余弦定理可得:;又的面積為,所以,所以,所以,所以周長為.19、(1)(2)答案見解析.【解題分析】(1)根據(jù)極值點(diǎn)求出,再利用導(dǎo)數(shù)求出的最大值,將不等式恒成立化為最大值成立可求出結(jié)果;(2)利用導(dǎo)數(shù)求出函數(shù)的極大、極小值,結(jié)合函數(shù)的圖象分類討論可得結(jié)果.【小問1詳解】函數(shù)的定義域?yàn)?,因?yàn)?,且在處取得極值,所以,即,得,此時(shí),當(dāng)時(shí),,為增函數(shù);當(dāng)時(shí)。,為減函數(shù),所以在處取得極大值,也是最大值,最大值為,因?yàn)閷?duì)任意正實(shí)數(shù),恒成立,所以,得.【小問2詳解】,,由,得,由,得或,所以在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),所以在時(shí)取得極大值為,在時(shí)取得極小值為,因?yàn)楫?dāng)大于0趨近于0時(shí),趨近于負(fù)無窮,當(dāng)趨近于正無窮時(shí),趨近于正無窮,所以當(dāng),即時(shí),有且只有一個(gè)零點(diǎn);當(dāng),即時(shí),有且只有兩個(gè)零點(diǎn);當(dāng),即時(shí),有且只有三個(gè)零點(diǎn);當(dāng),即時(shí),有且只有兩個(gè)零點(diǎn);當(dāng),即時(shí),有且只有一個(gè)零點(diǎn).綜上所述:當(dāng)或時(shí),有且只有一個(gè)零點(diǎn);當(dāng)或時(shí),有且只有兩個(gè)零點(diǎn);當(dāng)時(shí)有且只有三個(gè)零點(diǎn).20、(1)(2)【解題分析】(1)因?yàn)閳A心在直線上,可設(shè)圓心坐標(biāo)為,利用圓心到圓上兩點(diǎn)的距離相等列出等式求解即可.(2)直線與圓存在公共點(diǎn),即圓心到直線的距離小于等于半徑,列出不等關(guān)系求解即可.【小問1詳解】解:因?yàn)閳A心在直線上,所以設(shè)圓心坐標(biāo)為,因?yàn)閳A經(jīng)過,,所以,即:,解方程得,圓心坐標(biāo)為,半徑為,圓的標(biāo)準(zhǔn)方程為:【小問2詳解】圓心到直線的距離且直線與圓有公共點(diǎn)即21、(1)(2)∠PFQ=90°【解題分析】(1)由題意得求出a,c,然后求解b,即可得到橢圓方程(2)當(dāng)直線l的斜率不存在時(shí),驗(yàn)證,即∠PFQ=90°.當(dāng)直線l的斜率存在時(shí),設(shè)l:y=k(x﹣1),其中k≠0.聯(lián)立得(4k2+3)x2﹣8k2x+4k2﹣12=0.由題意,知Δ>0恒成立,設(shè)M(x1,y1),N(x2,y2),利用韋達(dá)定理,結(jié)合直線MA的方程為.求出、.利用向量的數(shù)量積,轉(zhuǎn)化求解即可【小問1詳解】由題意得解得a=2,c=1,從而,所以橢圓C的方程為【小問2詳解】當(dāng)直線l的斜率不存在時(shí),有,,P(4,﹣3),Q(4,3),F(xiàn)(1,0),則,,故,即∠PFQ=90°當(dāng)直線l的斜率存在時(shí),設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版實(shí)習(xí)指導(dǎo)教師專業(yè)素養(yǎng)提升項(xiàng)目勞動(dòng)合同規(guī)范3篇
- 2025版公益宣傳活動(dòng)宣傳品制作及推廣合同2篇
- 2025版住宅小區(qū)地下車庫車位租賃及維護(hù)服務(wù)合同范本2篇
- 2025版木工班組智能化設(shè)備引進(jìn)與應(yīng)用合同4篇
- 企業(yè)對(duì)人才需求談職業(yè)
- 2025年度個(gè)人房產(chǎn)維修勞務(wù)合同范本4篇
- 二零二五年度股權(quán)并購與國際化布局合同3篇
- 2025版國際貿(mào)易采購合同(原材料)3篇
- 民政局2025年度自愿離婚協(xié)議書財(cái)產(chǎn)分割與子女撫養(yǎng)協(xié)議范本4篇
- 基于2025年度需求的冷卻塔設(shè)計(jì)、安裝與調(diào)試服務(wù)合同2篇
- 四川省成都市武侯區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末考試化學(xué)試題
- 教育部《中小學(xué)校園食品安全和膳食經(jīng)費(fèi)管理工作指引》知識(shí)培訓(xùn)
- 初一到初三英語單詞表2182個(gè)帶音標(biāo)打印版
- 2024年秋季人教版七年級(jí)上冊生物全冊教學(xué)課件(2024年秋季新版教材)
- 環(huán)境衛(wèi)生學(xué)及消毒滅菌效果監(jiān)測
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(含答案)
- 碎屑巖油藏注水水質(zhì)指標(biāo)及分析方法
- 【S洲際酒店婚禮策劃方案設(shè)計(jì)6800字(論文)】
- 鐵路項(xiàng)目征地拆遷工作體會(huì)課件
- 醫(yī)院死亡報(bào)告年終分析報(bào)告
- 中國教育史(第四版)全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論