




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024學(xué)年廣東省云浮市郁南縣連灘中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.三等分角是“古希臘三大幾何問題”之一,數(shù)學(xué)家帕普斯巧妙地利用圓弧和雙曲線解決了這個問題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個三等分點,以A為左焦點,B,C為頂點作雙曲線T.設(shè)雙曲線T與弧的交點為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.2.甲乙兩名運動員在某項體能測試中的6次成績統(tǒng)計如表:甲9816151514乙7813151722分別表示甲乙兩名運動員這項測試成績的平均數(shù),分別表示甲乙兩名運動員這項測試成績的標(biāo)準(zhǔn)差,則有()A., B.,C., D.,3.已知函數(shù),則下列判斷正確的是()A.直線與曲線相切B.函數(shù)只有極大值,無極小值C.若與互為相反數(shù),則的極值與的極值互為相反數(shù)D.若與互為倒數(shù),則的極值與的極值互為倒數(shù)4.變量,滿足約束條件則的最小值為()A. B.C. D.55.如圖,在棱長為1的正方體中,點B到直線的距離為()A. B.C. D.6.△ABC的兩個頂點坐標(biāo)A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.7.經(jīng)過兩點直線的傾斜角是()A. B.C. D.8.已知動點在直線上,過點作圓的切線,切點為,則線段的長度的最小值為()A. B.4C. D.9.是雙曲線:上一點,已知,則的值()A. B.C.或 D.10.設(shè)異面直線、的方向向量分別為,,則異面直線與所成角的大小為()A. B.C. D.11.若圓與圓相切,則的值為()A. B.C.或 D.或12.動點到兩定點,的距離和是,則動點的軌跡為()A.橢圓 B.雙曲線C.線段 D.不能確定二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集是_______________14.對于實數(shù)表示不超過的最大整數(shù),如.已知數(shù)列的通項公式,前項和為,則___________.15.已知等差數(shù)列的公差不為零,若,,成等比數(shù)列,則______.16.根據(jù)某市有關(guān)統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進口總額x(單位:千億元)和出口總額y(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的進出口總額x,y滿足線性相關(guān)關(guān)系,則______;若計劃2022年出口總額達到5千億元,預(yù)計該年進口總額為______千億元三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,為平行四邊形,,平面,且,點是的中點.(1)求證:平面;(2)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.18.(12分)已知橢圓的左頂點、上頂點和右焦點分別為,且的面積為,橢圓上的動點到的最小距離是(1)求橢圓的方程;(2)過橢圓的左頂點作兩條互相垂直的直線交橢圓于不同的兩點(異于點).①證明:動直線恒過軸上一定點;②設(shè)線段中點為,坐標(biāo)原點為,求的面積的最大值.19.(12分)直線經(jīng)過兩直線和的交點(1)若直線與直線平行,求直線的方程;(2)若點到直線的距離為,求直線的方程20.(12分)已知橢圓的離心率為,點在橢圓上,直線與交于,兩點(1)求橢圓的方程及焦點坐標(biāo);(2)若線段的垂直平分線經(jīng)過點,求的取值范圍21.(12分)已知在時有極值0.(1)求常數(shù),的值;(2)求在區(qū)間上的最值.22.(10分)已知三棱柱中,,,平面ABC,,E為AB中點,D為上一點(1)求證:;(2)當(dāng)D為中點時,求平面ADC與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】由題設(shè)寫出雙曲線的方程,對比系數(shù),求出即可獲解【題目詳解】由題知所以雙曲線的方程為又由題設(shè)的方程為,所以,即設(shè)AB的中點為,則由.所以,即圓的半徑為2故選:C2、B【解題分析】根據(jù)給定統(tǒng)計表計算、,再比較、大小判斷作答.【題目詳解】依題意,,,,,所以,.故選:B3、C【解題分析】求出函數(shù)的導(dǎo)函數(shù),通過在某點處的導(dǎo)數(shù)為該點處切線的斜率,求出切線方程,并且判斷出極值,通過結(jié)合與互為相反數(shù),若與互為倒數(shù),分別判斷的極值與的極值是否互為相反數(shù),以及是否互為倒數(shù).【題目詳解】,,令,得,所以,因為,,所以曲線在點處的切線方程為,故A錯;當(dāng)時,存在使,且當(dāng)時,;當(dāng)時,,即有極小值,無極大值,故B錯誤;設(shè)為的極值點,則,且,所以,,當(dāng)時,;當(dāng)時,,故C正確,D錯誤.4、A【解題分析】根據(jù)不等式組,作出可行域,數(shù)形結(jié)合即可求z的最小值.【題目詳解】根據(jù)不等式組作出可行域如圖,,則直線過A(-1,0)時,z取最小值.故選:A.5、A【解題分析】以為坐標(biāo)原點,以為單位正交基底,建立空間直角坐標(biāo)系,取,,利用向量法,根據(jù)公式即可求出答案.【題目詳解】以為坐標(biāo)原點,以為單位正交基底,建立如圖所示的空間直角坐標(biāo)系,則,,取,,則,,則點B到直線AC1的距離為.故選:A6、D【解題分析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【題目詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【題目點撥】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎(chǔ)題.7、B【解題分析】求出直線的斜率后可得傾斜角【題目詳解】經(jīng)過兩點的直線的斜率為,設(shè)該直線的傾斜角為,則,又,所以.故選:B8、A【解題分析】求出的最小值,由切線長公式可結(jié)論【題目詳解】解:由,得最小時,最小,而,所以故選:A.9、B【解題分析】根據(jù)雙曲線定義,結(jié)合雙曲線上的點到焦點的距離的取值范圍,即可求解.【題目詳解】雙曲線方程為:,是雙曲線:上一點,,,或,又,.故選:B10、C【解題分析】利用空間向量夾角的公式直接求解.【題目詳解】,,,.由異面直線所成角的范圍為,故異面直線與所成的角為.故選:C11、C【解題分析】分類討論:當(dāng)兩圓外切時,圓心距等于半徑之和;當(dāng)兩圓內(nèi)切時,圓心距等于半徑之差,即可求解.【題目詳解】圓的圓心為,半徑為,圓的圓心為,半徑為.①當(dāng)兩圓外切時,有,此時.②當(dāng)兩圓內(nèi)切時,有,此時.綜上,當(dāng)時兩圓外切;當(dāng)時兩圓內(nèi)切.故選:C【題目點撥】本題考查了圓與圓的位置關(guān)系,解答兩圓相切問題時易忽略兩圓相切包括內(nèi)切和外切兩種情況.解答時注意分類討論,屬于基礎(chǔ)題.12、A【解題分析】根據(jù)橢圓的定義,即可得答案.【題目詳解】由題意可得,根據(jù)橢圓定義可得,P點的軌跡為橢圓,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、或【解題分析】將分式不等式,轉(zhuǎn)化為一元二次不等式求解【題目詳解】因為,所以,解得或.故答案為:或【題目點撥】本題主要考查分式不等式的解法,還考查了運算求解的能力,屬于基礎(chǔ)題.14、54【解題分析】由,利用裂項相消法求得,再由的定義求解.【題目詳解】由已知可得:,,當(dāng)時,,;當(dāng)時,,;當(dāng)時,,;當(dāng)時,,;當(dāng)時,;;所以.故答案為:54.15、0【解題分析】設(shè)等差數(shù)列的公差為,,根據(jù),,成等比數(shù)列,得到,再根據(jù)等差數(shù)列的通項公式可得結(jié)果.【題目詳解】設(shè)等差數(shù)列的公差為,,因為,,成等比數(shù)列,所以,所以,整理得,因為,所以,所以.故答案為:0.【題目點撥】本題考查了等比中項,考查了等差數(shù)列通項公式基本量運算,屬于基礎(chǔ)題.16、①.1.6;②.3.65.【解題分析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進口總額.【題目詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當(dāng)時,即,解得,所以,預(yù)計該年進口總額為千億元.故答案為:1.6;3.65三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)存在,【解題分析】(1)連接交于點,由三角形中位線性質(zhì)知,由線面平行判定定理證得結(jié)論;(2)以為原點建立空間直角坐標(biāo)系,假設(shè),可用表示出點坐標(biāo);根據(jù)二面角的向量求法可根據(jù)二面角的余弦值構(gòu)造出關(guān)于的方程,從而解得結(jié)果.【題目詳解】(1)連接交于點,連接,四邊形為平行四邊形,為中點,又為中點,,平面,平面,平面;(2)平面,,兩兩互相垂直,則以為坐標(biāo)原點,可建立如下圖所示的空間直角坐標(biāo)系:則,,,,,,設(shè),且,則,,即,設(shè)平面的法向量,又,,則,令,則,,;設(shè)平面的一個法向量,又,,則,令,則,,;,解得:或,二面角的余弦值為,二面角為銳二面角,不滿足題意,舍去,即.在線段上存在點,時,二面角的余弦值為.【題目點撥】本題考查立體幾何中的線面平行關(guān)系的證明、存在性問題的求解;求解存在性問題的關(guān)鍵是能夠利用共線向量的方式將所求點坐標(biāo)表示出來,進而利用二面角的向量求法構(gòu)造方程;易錯點是忽略二面角的范圍,造成參數(shù)值求解錯誤.18、(1)(2)①證明見解析;②【解題分析】(1)根據(jù)題意得,,解方程即可;(2)①設(shè)直線:,直線:,聯(lián)立曲線分別求出點和的坐標(biāo),求直線方程判斷定點即可;②根據(jù)題意得,代入求最值即可.【小問1詳解】根據(jù)題意得,,,又,三個式子聯(lián)立解得,,,所以橢圓的方程為:【小問2詳解】①證明:設(shè)兩條直線分別為和,根據(jù)題意和得斜率存在且不等于;因為,所以設(shè)直線:,直線:;由,解得,所以,同理,.當(dāng)時,,所以直線的方程為:,整理得,此時直線過定點;當(dāng)時,直線的方程為:,此時直線過定點,故直線恒過定點.②根據(jù)題意得,,,,所以,當(dāng)且僅當(dāng),即時等號成立,故的面積的最大值為:.【題目點撥】解決直線與橢圓綜合問題時,要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個條件,明確確定直線、橢圓的條件;(2)強化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題19、(1)(2)或【解題分析】(1)由題意兩立方程組,求兩直線的交點的坐標(biāo),利用兩直線平行的性質(zhì),用待定系數(shù)法求出的方程(2)分類討論直線的斜率,利用點到直線的距離公式,用點斜式求直線的方程【小問1詳解】解:由,解得,所以兩直線和的交點為當(dāng)直線與直線平行,設(shè)的方程為,把點代入求得,可得的方程為【小問2詳解】解:斜率不存在時,直線方程為,滿足點到直線的距離為5當(dāng)?shù)男甭蚀嬖跁r,設(shè)直限的方程為,即,則點到直線的距離為,求得,故的方程為,即綜上,直線的方程為或20、(1),(2)【解題分析】(1)由題意,列出關(guān)于a,b,c的方程組求解即可得答案;(2)設(shè)M(x1,y1),N(x2,y2),線段MN的中點(x0,y0),則,作差可得①,又線段MN的垂直平分線過點A(0,1),則②,聯(lián)立直線MN與橢圓的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式聯(lián)立即可求解【小問1詳解】解:由題意可得,解得,所以橢圓C的方程為,焦點坐標(biāo)為【小問2詳解】解:設(shè)M(x1,y1),N(x2,y2),線段MN的中點(x0,y0),因為,所以,即,所以①,因為線段MN的垂直平分線過點A(0,1),所以,即②,聯(lián)立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范圍為21、(1),;(2)最小值為0,最大值為4.【解題分析】(1)對求導(dǎo),根據(jù)在時有極值0,得到,再求出,的值;(2)由(1)知,,然后判斷的單調(diào)性,再求出的值域【題目詳解】解:(1),由題知:聯(lián)立(1)、(2)有(舍)或.當(dāng)時在定義域上單調(diào)遞增,故舍去;所以,,經(jīng)檢驗,符合題意(2)當(dāng),時,故方程有根或由,得或由得,函數(shù)的單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 重慶市物業(yè)服務(wù)合同范本示例
- 保理合同(日元)
- 房屋使用權(quán)合同轉(zhuǎn)租協(xié)議樣本
- 檢測服務(wù)合同范本:機構(gòu)合作篇
- 資產(chǎn)配置基金合同例文
- 度標(biāo)準(zhǔn)私人承包協(xié)議合同
- 農(nóng)產(chǎn)品購銷合同經(jīng)典合同范文
- 房地產(chǎn)項目苗木采購合同書模板
- 家電配件的表面裝飾與標(biāo)識技術(shù)考核試卷
- 中介服務(wù)行業(yè)的人力資源服務(wù)標(biāo)準(zhǔn)考核試卷
- DB11 938-2022 綠色建筑設(shè)計標(biāo)準(zhǔn)
- 部編版語文八年級下冊第六單元名著導(dǎo)讀《鋼鐵是怎樣煉成的》問答題 (含答案)
- 2022譯林版新教材高一英語必修二單詞表及默寫表
- 全國青少年機器人技術(shù)等級考試:二級培訓(xùn)全套課件
- 九種中醫(yī)體質(zhì)辨識概述課件
- (外研版)英語四年級下冊配套同步練習(xí) (全書完整版)
- 小學(xué)數(shù)學(xué)計算能力大賽實施方案
- 古詩詞誦讀《虞美人》課件-統(tǒng)編版高中語文必修上冊
- 文物學(xué)概論-中國古代青銅器(上)
- 制作拉線課件
- 某物業(yè)公司能力素質(zhì)模型庫(參考)
評論
0/150
提交評論