版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省丹東第四中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在四棱錐中,平面,,,則點到直線的距離為()A. B.C. D.22.在中,已知角A,B,C所對的邊為a,b,c,,,,則()A. B.C. D.13.下列關(guān)系中,正確的是()A. B.C. D.4.已知直線的一個方向向量,平面的一個法向量,若,則()A.1 B.C.3 D.5.算盤是中國傳統(tǒng)計算工具,是中國人在長期使用算籌的基礎(chǔ)上發(fā)明的,“珠算”一詞最早見于東漢徐岳所撰的《數(shù)術(shù)記遺》,其中有云:“珠算控帶四時,經(jīng)緯三才.”北周甄鸞為此作注,大意是:把木板刻為3部分,上、下兩部分是停游珠用的,中間一部分是作定位用的.下圖是一把算盤的初始狀態(tài),自右向左,分別是個位、十位、百位…,上面一粒珠(簡稱上珠)代表5,下面一粒珠(簡稱下珠)是1,即五粒下珠的大小等于同組一粒上珠的大?。F(xiàn)在從個位和十位這兩組中隨機選擇往下?lián)芤涣I现?,往上?粒下珠,得到的數(shù)為質(zhì)數(shù)(除了1和本身沒有其它的約數(shù))的概率是()A. B.C. D.6.“”是“直線:與直線:平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知數(shù)列滿足,,令,若對于任意不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.8.有下列四個命題,其中真命題是()A., B.,,C.,, D.,9.已知,則下列不等式一定成立的是()A. B.C. D.10.在矩形中,,在該矩形內(nèi)任取一點M,則事件“”發(fā)生的概率為()A. B.C. D.11.下列各式正確的是()A. B.C. D.12.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>0二、填空題:本題共4小題,每小題5分,共20分。13.已知定點,點在直線上運動,則,兩點的最短距離為________14.已知直線,,若,則實數(shù)______15.已知數(shù)列是等差數(shù)列,若,則___________.16.已知拋物線:,若直線與拋物線C相交于M,N兩點,則_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖長方體中,,,點為的中點.(1)求證:平面;(2)求證:平面;(3)求二面角的余弦值.18.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求在區(qū)間上的最值.19.(12分)已知函數(shù).(1)判斷的單調(diào)性.(2)證明:.20.(12分)如圖,在三棱錐中,底面,.點,,分別為棱,,的中點,是線段的中點,,(1)求證:平面;(2)求二面角的正弦值;(3)已知點在棱上,且直線與直線所成角的余弦值為,求線段的長21.(12分)在四棱錐中,平面,,,,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求直線與平面所成角的正弦值.22.(10分)已知橢圓C:()過點,且離心率為(1)求橢圓C的方程;(2)過點()的直線l(不與x軸重合)與橢圓C交于A,B兩點,點C與點B關(guān)于x軸對稱,直線AC與x軸交于點Q,試問是否為定值?若是,請求出該定值,若不是,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】如圖,以為坐標(biāo)原點,建立空間直角坐標(biāo)系,然后利用空間向量求解即可【題目詳解】因為平面,平面,平面,所以,,因為所以如圖,以為坐標(biāo)原點,建立空間直角坐標(biāo)系,則,,,,,即.在上的投影向量的長度為,故點到直線的距離為.故選:A2、B【解題分析】利用正弦定理求解.【題目詳解】在中,由正弦定理得,解得,故選:B.3、B【解題分析】根據(jù)對數(shù)函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)正弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷C,根據(jù)余弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷D;【題目詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調(diào)遞減,因為,所以,又,,因為在上單調(diào)遞增,所以,所以,所以,故B正確;對于C:因為在上單調(diào)遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調(diào)遞減,又,所以,又,所以,故D錯誤;故選:B4、D【解題分析】由向量平行充要條件代入解之即可解決.【題目詳解】由,可知,則有,解之得故選:D5、B【解題分析】根據(jù)古典概型概率計算公式,計算出所求的概率.【題目詳解】依題有,算盤所表示的數(shù)可能有:17,26,8,35,62,71,80,53,其中是質(zhì)數(shù)的有:17,71,53,故所求事件的概率為故選:B6、C【解題分析】根據(jù)兩直線平行求得的值,由此確定充分、必要條件.【題目詳解】由于,所以,當(dāng)時,兩直線重合,不符合題意,所以.所以“”是“直線:與直線:平行”的充要條件.故選:C7、D【解題分析】根據(jù)遞推關(guān)系,利用裂項相消法,累加法求出,可得,原不等式轉(zhuǎn)化為恒成立求解即可.【題目詳解】,,,由累加法可得,又,,符合上式,,,對于任意不等式恒成立,則,解得.故選:D8、B【解題分析】對于選項A,令即可驗證其不正確;對于選項C、選項D,令,即可驗證其均不正確,進而可得出結(jié)果.【題目詳解】對于選項A,令,則,故A錯;對于選項B,令,則,顯然成立,故B正確;對于選項C,令,則顯然無解,故C錯;對于選項D,令,則顯然不成立,故D錯.故選B【題目點撥】本題主要考查命題真假的判定,用特殊值法驗證即可,屬于??碱}型.9、B【解題分析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B10、D【解題分析】利用幾何概型的概率公式,轉(zhuǎn)化為面積比直接求解.【題目詳解】以AB為直徑作圓,當(dāng)點M在圓外時,.所以事件“”發(fā)生的概率為.故選:D11、C【解題分析】利用導(dǎo)數(shù)的四則運算即可求解.【題目詳解】對于A,,故A錯誤;對于B,,故B錯誤;對于C,,故C正確;對于D,,故D錯誤;故選:C12、B【解題分析】全稱命題的否定是特稱命題,把任意改為存在,把結(jié)論否定.【題目詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】線段最短,就是說的距離最小,此時直線和直線垂直,可先求的斜率,再求直線的方程,然后與直線聯(lián)立求交點即可【題目詳解】定點,點在直線上運動,當(dāng)線段最短時,就是直線和直線垂直,的方程為:,它與聯(lián)立解得,所以的坐標(biāo)是,所以,故答案為:14、【解題分析】由直線垂直可得到關(guān)于實數(shù)a的方程,解方程即可.【題目詳解】由直線垂直可得:,解得:.故答案為:15、8【解題分析】利用計算可得答案.【題目詳解】設(shè)等差數(shù)列的公差為,故答案為:8.16、8【解題分析】直線方程代入拋物線方程,應(yīng)用韋達定理根據(jù)弦長公式求弦長【題目詳解】設(shè),由得,所以,,故答案為:8三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)【解題分析】(1)作輔助線,由中位線定理證明,再由線面平行的判定定理證明即可;(2)連接,由勾股定理證明,,再結(jié)合線面垂直的判定定理證明即可;(3)建立空間直角坐標(biāo)系,利用向量法求面面角的余弦值即可.【題目詳解】(1)連接交與點,連接四邊形為正方形,點為的中點又點為的中點,平面,平面平面(2)連接由勾股定理可知,,則同理可證,平面平面(3)建立如下圖所示的空間直角坐標(biāo)系顯然平面的法向量即為平面的法向量,不妨設(shè)為由(2)可知平面,即平面的法向量為又二面角是鈍角二面角的余弦值為【題目點撥】關(guān)鍵點睛:在第一問中,關(guān)鍵是利用中位線定理找到線線平行,再由定義證明線面平行;在第二問中,關(guān)鍵是利用勾股定理證明線線垂直,從而得出線面垂直;在第三問中,關(guān)鍵是建立坐標(biāo)系,利用向量法求面面角的余弦值.18、(1)在、上是增函數(shù),在上是減函數(shù);(2)在區(qū)間,上的最大值為2,最小值為【解題分析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出單調(diào)區(qū)間;(2)根據(jù)(1)可知,函數(shù)在,、上為增函數(shù),在上為減函數(shù),求出端點值和極值,比較即可求出最值【小問1詳解】根據(jù)題意,由于,,得到,,在、上是增函數(shù),當(dāng)時,在上是減函數(shù);【小問2詳解】由(1)可知,函數(shù)在,,上為增函數(shù),在上為減函數(shù),,(1),,,在區(qū)間,上的最大值為2,最小值為19、(1)在R上單調(diào)遞增,無單調(diào)遞減區(qū)間;(2)證明見解析.【解題分析】(1)對求導(dǎo),令并應(yīng)用導(dǎo)數(shù)求最值,確定的符號,即可知的單調(diào)性.(2)利用作差法轉(zhuǎn)化證明的結(jié)論,令結(jié)合導(dǎo)數(shù)研究其單調(diào)性,最后討論的大小關(guān)系判斷的符號即可證結(jié)論.【小問1詳解】由題設(shè),.令,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增故,即,則在R上單調(diào)遞增,無單調(diào)遞減區(qū)間.【小問2詳解】.令,則.令,則,顯然在R上單調(diào)遞增,且,∴當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故,即,在R上單調(diào)遞增,又,∴當(dāng)時,,;當(dāng)時,,;當(dāng)時,.綜上,,即.【題目點撥】關(guān)鍵點點睛:第二問,應(yīng)用作差法有,構(gòu)造中間函數(shù)并應(yīng)用導(dǎo)數(shù)研究單調(diào)性,最后討論的大小證結(jié)論.20、(1)證明見解析;(2);(3)或【解題分析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎(chǔ)知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運算求解能力和推理論證能力.首先要建立空間直角坐標(biāo)系,寫出相關(guān)點的坐標(biāo),證明線面平行只需求出平面的法向量,計算直線對應(yīng)的向量與法向量的數(shù)量積為0,求二面角只需求出兩個半平面對應(yīng)的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點,分別以,,方向為x軸、y軸、z軸正方向建立空間直角坐標(biāo)系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設(shè),為平面BDE的法向量,則,即.不妨設(shè),可得.又=(1,2,),可得.因為平面BDE,所以MN//平面BDE.(2)解:易知為平面CEM的一個法向量.設(shè)為平面EMN的法向量,則,因為,,所以.不妨設(shè),可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設(shè)AH=h(),則H(0,0,h),進而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點】直線與平面平行、二面角、異面直線所成角【名師點睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關(guān)系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準(zhǔn),特別是借助平面的法向量求線面角,二面角或點到平面的距離都很容易.21、(1)證明見解析;(2)證明見解析;(3).【解題分析】(1)根據(jù)給定條件證得即可推理作答.(2)由已知條件,以點A作原點建立空間直角坐標(biāo)系,借助空間位置關(guān)系的向量證明即可作答.(3)利用(2)中信息,借助空間向量求直線與平面所成角的正弦值.【小問1詳解】在四棱錐中,因分別是的中點,則,因平面,平面,所以平面.【小問2詳解】在四棱錐中,平面,,以點A為原點,射線AB,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標(biāo)系,如圖,則,而且,則,,設(shè)平面的法向量,由,令,得,又,因此有,所以平面.【小問3詳解】由(2)知,,令直線與平面所成角為,則有,所以直線與平面所成角的正弦值.22、(1)(2)為定值【解題分析】(1)由題意可得解方程組求出,從而可得橢圓方程,(2)設(shè)直線AB:,,代入橢圓方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園餐飲供貨協(xié)議
- 附錄一國家行政機關(guān)公文處理辦法現(xiàn)代應(yīng)用文書寫作(第三版)教學(xué)課件電子教案
- 2025年度個人所得稅贍養(yǎng)老人專項附加扣除協(xié)議執(zhí)行細則4篇
- 2025年度個人留學(xué)擔(dān)保合同模板
- 2025年度個人收入證明范本及稅務(wù)合規(guī)服務(wù)合同
- 2025-2030全球氫混合鍋爐行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球CO2激光冷水機行業(yè)調(diào)研及趨勢分析報告
- 2024年女職工權(quán)益保護及性別平等知識有獎知識競賽題庫及答案
- 2024年居民健康素養(yǎng)知識競賽考試題庫含答案
- 2025年個人間技術(shù)秘密保護保密合同4篇
- NEC(新生兒壞死性小腸結(jié)腸炎)92273
- 高分子成型加工課件
- 消防救援-低溫雨雪冰凍惡劣天氣條件下災(zāi)害防范及救援行動與安全
- 供熱管網(wǎng)工程監(jiān)理大綱
- 國家臨床醫(yī)學(xué)研究臨床中心五年發(fā)展規(guī)劃
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)四 引起受眾傳播內(nèi)容要素的掌控
- 安徽新宸新材料有限公司年產(chǎn)6000噸鋰離子電池材料雙氟磺酰亞胺鋰項目環(huán)境影響報告書
- 繪本《汪汪的生日派對》
- 分手的協(xié)議書模板(5篇)
- 助產(chǎn)護理畢業(yè)論文
- 地震工程學(xué)概論課件
評論
0/150
提交評論