湖北黃岡2024年數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁(yè)
湖北黃岡2024年數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁(yè)
湖北黃岡2024年數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁(yè)
湖北黃岡2024年數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁(yè)
湖北黃岡2024年數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北黃岡2024年數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,,則()A. B. C. D.2.函數(shù)的部分圖象大致為()A. B.C. D.3.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則4.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.5.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.6.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.7.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.一只螞蟻在邊長(zhǎng)為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.9.已知滿足,則()A. B. C. D.10.一個(gè)陶瓷圓盤(pán)的半徑為,中間有一個(gè)邊長(zhǎng)為的正方形花紋,向盤(pán)中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計(jì)圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.14711.函數(shù),,則“的圖象關(guān)于軸對(duì)稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.一輛郵車(chē)從地往地運(yùn)送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時(shí),裝上發(fā)往后面地的郵件各1件,到達(dá)后面各地后卸下前面各地發(fā)往該地的郵件,同時(shí)裝上該地發(fā)往后面各地的郵件各1件,記該郵車(chē)到達(dá),,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達(dá)式為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則除以的余數(shù)是______.14.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.15.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_(kāi)____.16.農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說(shuō)這是為了紀(jì)念戰(zhàn)國(guó)時(shí)期楚國(guó)大臣、愛(ài)國(guó)主義詩(shī)人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長(zhǎng)為1的正三角形構(gòu)成的,將它沿虛線折起來(lái),可以得到如圖所示粽子形狀的六面體,則該六面體的體積為_(kāi)___;若該六面體內(nèi)有一球,則該球體積的最大值為_(kāi)___.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.18.(12分)在極坐標(biāo)系中,直線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點(diǎn)的直角坐標(biāo).19.(12分)已知數(shù)列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數(shù)列的前項(xiàng)和為,且,若對(duì),恒成立,求正整數(shù)的值.20.(12分)如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E,F(xiàn)分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).求證:(1)直線平面EFG;(2)直線平面SDB.21.(12分)已知函數(shù),.(1)若不等式對(duì)恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實(shí)根為.令若存在,,,使得,證明:.22.(10分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若不等式恒成立,求實(shí)數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】

求得集合中函數(shù)的值域,由此求得,進(jìn)而求得.【題目詳解】由,得,所以,所以.故選:A【題目點(diǎn)撥】本小題主要考查函數(shù)值域的求法,考查集合補(bǔ)集、交集的概念和運(yùn)算,屬于基礎(chǔ)題.2、B【解題分析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況。【題目詳解】,故奇函數(shù),四個(gè)圖像均符合。當(dāng)時(shí),,,排除C、D當(dāng)時(shí),,,排除A。故選B?!绢}目點(diǎn)撥】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。3、D【解題分析】試題分析:,,故選D.考點(diǎn):點(diǎn)線面的位置關(guān)系.4、B【解題分析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.5、A【解題分析】

根據(jù)題意,畫(huà)出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【題目詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.【題目點(diǎn)撥】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.6、B【解題分析】

根據(jù)定義域排除,求出的值,可以排除,考慮排除.【題目詳解】根據(jù)函數(shù)圖象得定義域?yàn)?,所以不合題意;選項(xiàng),計(jì)算,不符合函數(shù)圖象;對(duì)于選項(xiàng),與函數(shù)圖象不一致;選項(xiàng)符合函數(shù)圖象特征.故選:B【題目點(diǎn)撥】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見(jiàn)方法為排除法.7、B【解題分析】

由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【題目詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【題目點(diǎn)撥】本題主要考查了兩直線的位置關(guān)系,及必要不充分條件的判定,其中解答中利用兩直線的位置關(guān)系求得的值,同時(shí)熟記充要條件的判定方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.8、A【解題分析】

求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【題目詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個(gè)頂點(diǎn)、、的距離都大于的概率是.故選:A.【題目點(diǎn)撥】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.9、A【解題分析】

利用兩角和與差的余弦公式展開(kāi)計(jì)算可得結(jié)果.【題目詳解】,.故選:A.【題目點(diǎn)撥】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.10、B【解題分析】

結(jié)合隨機(jī)模擬概念和幾何概型公式計(jì)算即可【題目詳解】如圖,由幾何概型公式可知:.故選:B【題目點(diǎn)撥】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題11、B【解題分析】

根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【題目詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對(duì)稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對(duì)稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對(duì)稱.所以,“的圖象關(guān)于軸對(duì)稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對(duì)稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【題目點(diǎn)撥】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.12、D【解題分析】

根據(jù)題意,分析該郵車(chē)到第站時(shí),一共裝上的郵件和卸下的郵件數(shù)目,進(jìn)而計(jì)算可得答案.【題目詳解】解:根據(jù)題意,該郵車(chē)到第站時(shí),一共裝上了件郵件,需要卸下件郵件,則,故選:D.【題目點(diǎn)撥】本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】

利用二項(xiàng)式定理得到,將89寫(xiě)成1+88,然后再利用二項(xiàng)式定理展開(kāi)即可.【題目詳解】,因展開(kāi)式中后面10項(xiàng)均有88這個(gè)因式,所以除以的余數(shù)為1.故答案為:1【題目點(diǎn)撥】本題考查二項(xiàng)式定理的綜合應(yīng)用,涉及余數(shù)的問(wèn)題,解決此類(lèi)問(wèn)題的關(guān)鍵是靈活構(gòu)造二項(xiàng)式,并將它展開(kāi)分析,本題是一道基礎(chǔ)題.14、1【解題分析】

按照個(gè)位上的9元的支付情況分類(lèi),三個(gè)數(shù)位上的錢(qián)數(shù)分步計(jì)算,相加即可.【題目詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時(shí),200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;②當(dāng)9元采用方式支付時(shí):200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;所以總的支付方式共有種.故答案為:1.【題目點(diǎn)撥】本題考查了分類(lèi)加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,屬于中檔題.做題時(shí)注意分類(lèi)做到不重不漏,分步做到步驟完整.15、【解題分析】

模擬程序的運(yùn)行過(guò)程知該程序運(yùn)行后計(jì)算并輸出的值,用裂項(xiàng)相消法求和即可.【題目詳解】模擬程序的運(yùn)行過(guò)程知,該程序運(yùn)行后執(zhí)行:.故答案為:【題目點(diǎn)撥】本題考查算法語(yǔ)句中的循環(huán)語(yǔ)句和裂項(xiàng)相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.16、【解題分析】

(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對(duì)稱性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),求出球的半徑,再代入球的體積公式可得答案.【題目詳解】(1)每個(gè)三角形面積是,由對(duì)稱性可知該六面是由兩個(gè)正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對(duì)稱性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),由于圖像的對(duì)稱性,內(nèi)部的小球要是體積最大,就是球要和六個(gè)面相切,連接球心和五個(gè)頂點(diǎn),把六面體分成了六個(gè)三棱錐設(shè)球的半徑為,所以,所以球的體積.故答案為:;.【題目點(diǎn)撥】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計(jì)算,考查邏輯推理能力和空間想象能力求解球的體積關(guān)鍵是判斷在什么情況下,其體積達(dá)到最大,考查運(yùn)算求解能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析.【解題分析】

(1)求出導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點(diǎn)橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫(xiě)出切線方程,問(wèn)題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點(diǎn)存在性定理即可證明存在.【題目詳解】(1),函數(shù)在上單調(diào)遞增等價(jià)于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因?yàn)?,則在上恒成立等價(jià)于在上恒成立;又,所以,即.(2)設(shè)的切點(diǎn)橫坐標(biāo)為,則切線方程為……①設(shè)的切點(diǎn)橫坐標(biāo)為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時(shí)總有又時(shí),在上總有解綜上,函數(shù)與總存在公切線.【題目點(diǎn)撥】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問(wèn)題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.18、【解題分析】

將直線的極坐標(biāo)方程和曲線的參數(shù)方程分別化為直角坐標(biāo)方程,聯(lián)立直角坐標(biāo)方程求出交點(diǎn)坐標(biāo),結(jié)合的取值范圍進(jìn)行取舍即可.【題目詳解】因?yàn)橹本€的極坐標(biāo)方程為,所以直線的普通方程為,又因?yàn)榍€的參數(shù)方程為(為參數(shù)),所以曲線的直角坐標(biāo)方程為,聯(lián)立方程,解得或,因?yàn)?,所以舍去,故點(diǎn)的直角坐標(biāo)為.【題目點(diǎn)撥】本題考查極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化;考查運(yùn)算求解能力;熟練掌握極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化公式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.19、(Ⅰ),;(Ⅱ)1【解題分析】

(Ⅰ)易得為等比數(shù)列,再利用前項(xiàng)和與通項(xiàng)的關(guān)系求解的通項(xiàng)公式即可.(Ⅱ)由題可知要求的最小值,再分析的正負(fù)即可得隨的增大而增大再判定可知即可.【題目詳解】(Ⅰ)因?yàn)?故是以為首項(xiàng),2為公比的等比數(shù)列,故.又當(dāng)時(shí),,解得.當(dāng)時(shí),…①…②①-②有,即.當(dāng)時(shí)也滿足.故為常數(shù)列,所以.即.故,(Ⅱ)因?yàn)閷?duì),恒成立.故只需求的最小值即可.設(shè),則,又,又當(dāng)時(shí),時(shí).當(dāng)時(shí),因?yàn)?故.綜上可知.故隨著的增大而增大,故,故【題目點(diǎn)撥】本題主要考查了根據(jù)數(shù)列的遞推公式求解通項(xiàng)公式的方法,同時(shí)也考查了根據(jù)數(shù)列的增減性判斷最值的問(wèn)題,需要根據(jù)題意求解的通項(xiàng),并根據(jù)二項(xiàng)式定理分析其正負(fù),從而得到最小項(xiàng).屬于難題.20、(1)見(jiàn)解析(2)見(jiàn)解析【解題分析】

(1)連接AC、BD交于點(diǎn)O,交EF于點(diǎn)H,連接GH,再證明即可.(2)證明與即可.【題目詳解】(1)連接AC、BD交于點(diǎn)O,交EF于點(diǎn)H,連接GH,所以O(shè)為AC的中點(diǎn),H為OC的中點(diǎn),由E、F為DC、BC的中點(diǎn),再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因?yàn)閭?cè)面底面ABCD,由面面垂直的性質(zhì)定理可知平面ABCD,所以,因?yàn)榈酌鍭BCD是菱形,所以,因?yàn)?所以平面SDB.【題目點(diǎn)撥】本題考查線面平行與垂直的證明.需要根據(jù)題意利用等比例以及余弦定理勾股定理等證明.屬于中檔題.21、(1)(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解題分析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論