![2023-2024學(xué)年河南省駐馬店市經(jīng)濟開發(fā)區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁](http://file4.renrendoc.com/view/2d6f6a1b7b1e078a07427948962684d6/2d6f6a1b7b1e078a07427948962684d61.gif)
![2023-2024學(xué)年河南省駐馬店市經(jīng)濟開發(fā)區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁](http://file4.renrendoc.com/view/2d6f6a1b7b1e078a07427948962684d6/2d6f6a1b7b1e078a07427948962684d62.gif)
![2023-2024學(xué)年河南省駐馬店市經(jīng)濟開發(fā)區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁](http://file4.renrendoc.com/view/2d6f6a1b7b1e078a07427948962684d6/2d6f6a1b7b1e078a07427948962684d63.gif)
![2023-2024學(xué)年河南省駐馬店市經(jīng)濟開發(fā)區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁](http://file4.renrendoc.com/view/2d6f6a1b7b1e078a07427948962684d6/2d6f6a1b7b1e078a07427948962684d64.gif)
![2023-2024學(xué)年河南省駐馬店市經(jīng)濟開發(fā)區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁](http://file4.renrendoc.com/view/2d6f6a1b7b1e078a07427948962684d6/2d6f6a1b7b1e078a07427948962684d65.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年河南省駐馬店市經(jīng)濟開發(fā)區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.2.如圖,網(wǎng)格紙是由邊長為1的小正方形構(gòu)成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.3.已知數(shù)列的通項公式為,將這個數(shù)列中的項擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個數(shù)的和,則數(shù)列的前2020項和為()A. B. C. D.4.一小商販準(zhǔn)備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進(jìn)價元,乙每件進(jìn)價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件5.設(shè)全集,集合,則=()A. B. C. D.6.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.47.已知雙曲線,為坐標(biāo)原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.8.已知函數(shù)的值域為,函數(shù),則的圖象的對稱中心為()A. B.C. D.9.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.210.已知是虛數(shù)單位,若,,則實數(shù)()A.或 B.-1或1 C.1 D.11.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.12.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.如圖,直三棱柱中,,,,P是的中點,則三棱錐的體積為________.14.農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.15.在△ABC中,a=3,,B=2A,則cosA=_____.16.已知是等比數(shù)列,且,,則__________,的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當(dāng)平面,求的值;(2)當(dāng)是中點時,求四面體的體積.18.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若關(guān)于的不等式的解集包含,求實數(shù)的取值范圍.19.(12分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.20.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點且傾斜角為.(1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;(2)已知直線與曲線交于,滿足為的中點,求.21.(12分)已知是各項都為正數(shù)的數(shù)列,其前項和為,且為與的等差中項.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項和.22.(10分)設(shè)等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設(shè),,請計算,,;(2)設(shè),,試求,的表達(dá)式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因為當(dāng)時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.2、C【解析】
根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運算的核心素養(yǎng).3、D【解析】
由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.4、D【解析】
由題意列出約束條件和目標(biāo)函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購買甲、乙兩種商品的件數(shù)應(yīng)分別,利潤為元,由題意,畫出可行域如圖所示,顯然當(dāng)經(jīng)過時,最大.故選:D.【點睛】本題考查線性目標(biāo)函數(shù)的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數(shù),是否是非負(fù)數(shù),并準(zhǔn)確的畫出可行域,本題是一道基礎(chǔ)題.5、A【解析】
先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎(chǔ)題.6、B【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標(biāo)函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線性規(guī)劃問題,意在考查學(xué)生的綜合應(yīng)用能力,畫出圖像是解題的關(guān)鍵.7、D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.8、B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標(biāo)錯寫為09、B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.10、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復(fù)數(shù)的運算,屬于基礎(chǔ)題11、B【解析】
由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應(yīng)填?故選:.【點睛】本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.12、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點,.
故答案為:【點睛】本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎(chǔ)題.14、【解析】
(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達(dá)到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對稱性得,小球的體積要達(dá)到最大,即球與六個面都相切時,由于圖像的對稱性,內(nèi)部的小球要是體積最大,就是球要和六個面相切,連接球心和五個頂點,把六面體分成了六個三棱錐設(shè)球的半徑為,所以,所以球的體積.故答案為:;.【點睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計算,考查邏輯推理能力和空間想象能力求解球的體積關(guān)鍵是判斷在什么情況下,其體積達(dá)到最大,考查運算求解能力.15、【解析】
由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.16、5【解析】,即的最大值為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】
(1)利用線面垂直的性質(zhì)得出,進(jìn)而得出,利用相似三角形的性質(zhì),得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進(jìn)而得出四面體的體積,計算出,,即可得出四面體的體積.【詳解】(1)因為平面,平面,所以又因為,都垂直于平面,所以又,分別是正方形邊,的中點,且,所以.(2)因為,分別是正方形邊,的中點,所以又因為,都垂直于平面,平面,所以因為平面,所以平面所以,四面體的體積,所以.【點睛】本題主要考查了線面垂直的性質(zhì)定理的應(yīng)用,以及求棱錐的體積,屬于中檔題.18、(1)(2)【解析】
(1)按進(jìn)行分類,得到等價不等式組,分別解出解集,再取并集,得到答案;(2)將問題轉(zhuǎn)化為在時恒成立,按和分類討論,分別得到不等式恒成立時對應(yīng)的的范圍,再取交集,得到答案.【詳解】解:(1)當(dāng)時,等價于或或,解得或或,所以不等式的解集為:.(2)依題意即在時恒成立,當(dāng)時,,即,所以對恒成立∴,得;當(dāng)時,,即,所以對任意恒成立,∴,得∴,綜上,.【點睛】本題考查分類討論解絕對值不等式,分類討論研究不等式恒成立問題,屬于中檔題.19、(1)(2)【解析】
(1)為假,則為真,求導(dǎo),利用導(dǎo)函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當(dāng)時,,單調(diào)遞增,當(dāng),,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關(guān)的參數(shù)取值范圍問題的本質(zhì)是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉(zhuǎn)化思想將條件合理轉(zhuǎn)化,得到關(guān)于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍.20、(1),;(2).【解析】
(1)由曲線的參數(shù)方程消去參數(shù)可得曲線的普通方程,由此可求曲線的極坐標(biāo)方程;直接利用直線的傾斜角以及經(jīng)過的點求出直線的參數(shù)方程即可;(2)將直線的參數(shù)方程,代入曲線的普通方程,整理得,利用韋達(dá)定理,根據(jù)為的中點,解出即可.【詳解】(1)由(為參數(shù))消去參數(shù),可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標(biāo)方程為,直線經(jīng)過點,且傾斜角為,直線的參數(shù)方程:(為參數(shù),).(2)設(shè)對應(yīng)的參數(shù)分別為,.將直線的參數(shù)方程代入并整理,得,,.又為的中點,,,,,即,,,,即,.【點睛】本題考查了圓的參數(shù)方程與極坐標(biāo)方程之間的互化以及直線參數(shù)方程的應(yīng)用,考查了計算能力,屬于中檔題.21、(1)證明見解析;(2).【解析】
(1)利用已知條件化簡出,當(dāng)時,,當(dāng)時,再利用進(jìn)行化簡,得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項公式,再化簡出,可直接求出的前100項和.【詳解】解:(1)由題意知,即,①當(dāng)時,由①式可得;又時,有,代入①式得,整理得,∴是首項為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項和.【點睛】本題考查數(shù)列遞推關(guān)系的應(yīng)用,通項公式的求法以及裂項相消法求和,考查分析解題能力和計算能力.22、(1)(2)詳見解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋租賃合同(附房屋交割清單)
- 2025年四川省職教高考《語文》核心考點必刷必練試題庫(含答案)
- 第2章 陸地和海洋(真題重組卷)-(解析版)
- 2025年河北軟件職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年河北政法職業(yè)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年江西水利職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年江西婺源茶業(yè)職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年江蘇城鄉(xiāng)建設(shè)職業(yè)學(xué)院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年無錫科技職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年承德石油高等??茖W(xué)校高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 蛋糕店服務(wù)員勞動合同
- 土地買賣合同參考模板
- 2025高考數(shù)學(xué)二輪復(fù)習(xí)-專題一-微專題10-同構(gòu)函數(shù)問題-專項訓(xùn)練【含答案】
- 2025年天津市政建設(shè)集團招聘筆試參考題庫含答案解析
- 2024-2030年中國烘焙食品行業(yè)運營效益及營銷前景預(yù)測報告
- 寧德時代筆試題庫
- 康復(fù)醫(yī)院患者隱私保護管理制度
- 公司安全事故隱患內(nèi)部舉報、報告獎勵制度
- 沈陽理工大學(xué)《數(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 北京三甲中醫(yī)疼痛科合作方案
- QCT957-2023洗掃車技術(shù)規(guī)范
評論
0/150
提交評論