




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
【百強名?!?023屆新高考地區(qū)百強名校新高考數(shù)學模擬考試壓軸題精編卷(三)(新高考通用)一、單選題1.(2023·重慶沙坪壩·高三重慶南開中學??茧A段練習)已知角,滿足,,則(
).A. B. C.1 D.22.(2023春·河北石家莊·高三石家莊二中??茧A段練習)若,,,則實數(shù)a,b,c的大小關系為(
)A. B.C. D.3.(2023春·河北石家莊·高三石家莊二中??茧A段練習)設是平面直角坐標系中關于軸對稱的兩點,且.若存在,使得與垂直,且,則的最小值為(
)A.1 B. C.2 D.4.(2023春·山東濟南·高三山東省實驗中學??奸_學考試)已知,則的大小關系為(
)A. B.C. D.5.(2023春·山東濟南·高三山東省實驗中學??奸_學考試)已知雙曲線的右焦點為,過點作一條漸近線的垂線,垂足為,若的重心在雙曲線上,則雙曲線的離心率為(
)A. B. C. D.6.(2023春·湖南長沙·高三湖南師大附中??茧A段練習)如圖,在中,已知,,E,F(xiàn)分別是邊AB,AC上的點,且,,其中,,且,若線段EF,BC的中點分別為M,N,則的最小值為(
)A. B. C. D.7.(2023春·浙江杭州·高三浙江省杭州第二中學??奸_學考試)已知數(shù)列的通項公式為,前項和為,若實數(shù)滿足對任意正整數(shù)恒成立,則實數(shù)的取值范圍是(
)A. B. C. D.8.(2023春·湖南長沙·高三湖南師大附中??茧A段練習)已知函數(shù),正數(shù)滿足,則的最小值(
)A. B. C. D.9.(2023·重慶沙坪壩·高三重慶南開中學??茧A段練習)如圖,橢圓的左焦點為,右頂點為A,點Q在y軸上,點P在橢圓上,且滿足軸,四邊形是等腰梯形,直線與y軸交于點,則橢圓的離心率為(
).A. B. C. D.10.(2023春·浙江杭州·高三浙江省杭州第二中學??奸_學考試)已知為單位向量,,,當取到最大值時,等于(
)A. B. C. D.二、多選題11.(2023春·河北石家莊·高三石家莊二中校考階段練習)已知函數(shù)圖像過點,且存在,當時,,則(
)A.的周期為B.圖像的一條對稱軸方程為C.在區(qū)間上單調遞減D.在區(qū)間上有且僅有4個極大值點12.(2023春·湖南長沙·高三湖南師大附中校考階段練習)2021年3月30日,小米正式開始啟用具備“超橢圓”數(shù)學之美的新logo(如圖所示),設計師的靈感來源于曲線.當時,下列關于曲線的判斷正確的有(
)A.曲線關于軸和軸對稱B.曲線所圍成的封閉圖形的面積小于8C.設,直線交曲線于兩點,則的周長小于8D.曲線上的點到原點的距離的最大值為13.(2023春·湖南長沙·高三湖南師大附中校考階段練習)已知球O的半徑為4,球心O在大小為的二面角內,二面角的兩個半平面所在的平面分別截球面得兩個圓,,若兩圓,的公共弦AB的長為4,E為AB的中點,四面體得體積為V,則一定正確的是(
)A.O,E,,四點共圓 B.C. D.V的最大值為14.(2023春·山東濟南·高三山東省實驗中學??奸_學考試)過直線上一點作圓的切線,切點分別為,則(
)A.若直線,則B.的最小值為C.直線過定點D.線段的中點的軌跡長度為15.(2023春·浙江杭州·高三浙江省杭州第二中學??奸_學考試)已知實數(shù)a,b,c滿足,則下列關系式中可能成立的是(
)A. B. C. D.16.(2023春·河北石家莊·高三石家莊二中??茧A段練習)已知雙曲線的左、右焦點分別為,過的直線交C的右支于點A,B,若,則(
)A. B.C的漸近線方程為C. D.與面積之比為2∶117.(2023·重慶沙坪壩·高三重慶南開中學??茧A段練習)已知數(shù)列滿足,,,則下列結論正確的有(
).A.數(shù)列是遞增數(shù)列 B.C. D.18.(2023·重慶沙坪壩·高三重慶南開中學??茧A段練習)已知,為函數(shù)圖象上兩點,且軸,直線,分別是函數(shù)圖象在點處的切線,且,的交點為,,與軸的交點分別為,則下列結論正確的是(
).A. B.C.的面積 D.存在直線,使與函數(shù)圖象相切19.(2023春·山東濟南·高三山東省實驗中學??奸_學考試)已知在三棱錐中,,,,,設二面角的大小為,是的中點,當變化時,下列說法正確的是(
)A.存在,使得B.存在,使得平面C.點在某個球面上運動D.當時,三棱錐外接球的體積為20.(2023春·浙江杭州·高三浙江省杭州第二中學??奸_學考試)直線與函數(shù)的圖像有4個不同的交點,并且從左到右四個交點分別為,它們的橫坐標依次是,則下列關系式正確的是(
)A. B.C. D.存在使得A點處切線與點處切線垂直三、填空題21.(2023春·湖南長沙·高三湖南師大附中??茧A段練習)已知函數(shù),若關于的不等式恒成立,則實數(shù)的取值范圍為______22.(2023春·山東濟南·高三山東省實驗中學??奸_學考試)已知數(shù)列滿足:,記,且,則整數(shù)_____.23.(2023春·河北石家莊·高三石家莊二中??茧A段練習)已知橢圓的焦距為2,過橢圓的右焦點且不與兩坐標軸平行的直線交橢圓于,兩點,若軸上的點滿足且恒成立,則橢圓離心率的取值范圍為______.24.(2023春·浙江杭州·高三浙江省杭州第二中學??奸_學考試)已知關于的不等式恒成立,則的取值范圍是_____.25.(2023春·河北石家莊·高三石家莊二中??茧A段練習)若函數(shù)只有一個極值點,則的取值范圍是___________.四、雙空題26.(2023·重慶沙坪壩·高三重慶南開中學校考階段練習)已知拋物線的焦點為F,準線交x軸于點D,過點F作傾斜角為(為銳角)的直線交拋物線于A,B兩點,如圖,把平面沿x軸折起,使平面平面,則三棱錐體積為__________;若,則異面直線,所成角的余弦值取值范圍為__________.五、解答題27.(2023春·湖南長沙·高三湖南師大附中??茧A段練習)已知雙曲線的頂點為,,過右焦點作其中一條漸近線的平行線,與另一條漸近線交于點,且.點為軸正半軸上異于點的任意點,過點的直線交雙曲線于C,D兩點,直線與直線交于點.(1)求雙曲線的標準方程;(2)求證:為定值.28.(2023春·浙江杭州·高三浙江省杭州第二中學??奸_學考試)已知函數(shù),(1)時,若恒成立,求的取值范圍;(2),在上有極值點,求證:.29.(2023春·浙江杭州·高三浙江省杭州第二中學??奸_學考試)已知拋物線上一點,圓:,過作圓的兩條切線,切點分別為A,B.(1)求直線的方程:(2)直線分別與拋物線交于兩點,求線段的長度.30.(2023春·河北石家莊·高三石家莊二中??茧A段練習)已知雙曲線的實軸長為4,左?右頂點分別為,經(jīng)過點的直線與的右支分別交于兩點,其中點在軸上方.當軸時,(1)設直線的斜率分別為,求的值;(2)若,求的面積.31.(2023春·湖南長沙·高三湖南師大附中??茧A段練習)已知函數(shù).(1)當時,求證:;(2)若對恒成立,求.32.(2023春·山東濟南·高三山東省實驗中學??奸_學考試)已知函數(shù)(1)當時,求的單調區(qū)間;(2)若有兩個零點,求的范圍,并證明33.(2023春·山東濟南·高三山東省實驗中學校考開學考試)已知橢圓的左?右焦點分別為,過點作直線(與軸不重合)交于兩點,且當為的上頂點時,的周長為8,面積為(1)求的方程;(2)若是的右頂點,設直線的斜率分別為,求證:為定值.34.(2023春·河北石家莊·高三石家莊二中??茧A段練習)已知函數(shù).(1)討論的單調性;(2)設是兩個不相等的正數(shù),且,證明:.35.(2023·重慶沙坪壩·高三重慶南開中學??茧A段練習)已知函數(shù),.(1)當時,求函數(shù)的單調區(qū)間;(2)若,設直線l為在處的切線,且l與的圖像在內有兩個不同公共點,求實數(shù)a的取值范圍.36
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江萬里學院《美學與醫(yī)學美學》2023-2024學年第二學期期末試卷
- 平?jīng)鍪徐`臺縣2024-2025學年六年級下學期調研數(shù)學試卷含解析
- 武漢紡織大學外經(jīng)貿學院《廣播電視新聞采編》2023-2024學年第二學期期末試卷
- 廣州商學院《口腔工藝管理》2023-2024學年第二學期期末試卷
- 云南財經(jīng)大學《新技術在城市規(guī)劃中的應用》2023-2024學年第二學期期末試卷
- 鎮(zhèn)江市高等專科學?!队耙曁摂M空間技術》2023-2024學年第一學期期末試卷
- 浙江工業(yè)大學《精神衛(wèi)生保健》2023-2024學年第一學期期末試卷
- 債券相關知識培訓
- 工藝流程培訓
- 遼寧省大連市瓦房店市2024-2025學年七年級下學期期中地理試題(含答案)
- 院科兩級人員緊急替代程序與替代方案
- 《金屬加工基礎(第二版)》中職全套教學課件
- 2025年湖北省初中學業(yè)水平考試數(shù)學模擬卷(二)(原卷版+解析版)
- 2025年華能新能源股份有限公司廣東分公司應屆高校畢業(yè)生招聘筆試參考題庫附帶答案詳解
- 2025年新疆克州中考英語一模試卷
- 2024年新疆伊犁州直檢察機關招聘聘用制書記員筆試真題
- 口腔四手操作培訓
- 醫(yī)院檢驗科簡介
- 成人手術后疼痛評估與護理團體標準
- 連鎖藥店年度規(guī)劃
- 2024年10月自考07729倉儲技術與庫存理論試題及答案
評論
0/150
提交評論