高中數(shù)學(xué)大題優(yōu)質(zhì)練習(xí)2數(shù)列_第1頁(yè)
高中數(shù)學(xué)大題優(yōu)質(zhì)練習(xí)2數(shù)列_第2頁(yè)
高中數(shù)學(xué)大題優(yōu)質(zhì)練習(xí)2數(shù)列_第3頁(yè)
高中數(shù)學(xué)大題優(yōu)質(zhì)練習(xí)2數(shù)列_第4頁(yè)
高中數(shù)學(xué)大題優(yōu)質(zhì)練習(xí)2數(shù)列_第5頁(yè)
已閱讀5頁(yè),還剩50頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)列一.解答題(共50小題)1.(2022秋?新泰市校級(jí)期中)已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,且滿足a1+a5=10,S4=16;數(shù)列{bn}滿足:b1+3b2+32b3+…+3n﹣1bn=,(n∈N*).(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;(Ⅱ)設(shè)cn=anbn+,求數(shù)列{cn}的前n項(xiàng)和Tn.2.(2022秋?鄒城市期中)已知數(shù)列{an},a1=2,且滿足n∈N*,有an?an+1=22n+1.(1)求數(shù)列{an}的通項(xiàng)公式an;(2)若bn=an(an﹣1),設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,試求和:.3.(2022秋?浙江月考)在下面三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中并作答.①nan+1=(n+1)an+1;②;③.已知Sn為數(shù)列{an}的前n項(xiàng)和,滿足a1=1,an>0,.(1)求{an}的通項(xiàng)公式;(2)若bn=[lg(an+1)],其中[x]表示不超過(guò)x的最大整數(shù),求數(shù)列{bn}的前100項(xiàng)和T100.4.(2022秋?麗水月考)在數(shù)列{an}中,a1=,an﹣an+1=2an+1an(n∈N*).(1)求數(shù)列{an}的通項(xiàng)公式;(2)求滿足不等式a1a2+a2a3+…+akak+1<成立的k的最大值.5.(2022秋?寧波月考)已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an﹣2(n∈N*).(1)求數(shù)列{an}的通項(xiàng)公式;(2)令bn=an﹣4n,求數(shù)列的前n項(xiàng)和Tn.6.(2022秋?溫州月考)已知數(shù)列{an}是等差數(shù)列,a1=1,且a1,a2,a5﹣1成等比數(shù)列.給定k∈N*,記集合{n|k≤an≤2k,n∈N*}的元素個(gè)數(shù)為bk.(1)求b1,b2的值;(2)求最小自然數(shù)n的值,使得b1+b2+…+bn>2022.7.(2022秋?南山區(qū)校級(jí)期中)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S5=35,且a4是a1與a13的等比中項(xiàng),數(shù)列{bn}的前n項(xiàng)和.(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;(2)若a1<4,對(duì)任意n∈N*總有恒成立,求實(shí)數(shù)λ的最小值.8.(2022秋?浙江月考)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,Sn=2+an+1.(n∈N*).(1)證明:數(shù)列{Sn﹣2}為等比數(shù)列;(2)設(shè)bn=,記數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn<1.9.(2022秋?上城區(qū)校級(jí)月考)已知各項(xiàng)均為正數(shù)的無(wú)窮數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,.(1)證明數(shù)列{an}是等差數(shù)列,并求出{an}的通項(xiàng)公式;(2)設(shè)數(shù)列{bn}滿足,證明:.10.(2022?浙江開學(xué))已知數(shù)列{an}的首項(xiàng)為,對(duì)于任意的正自然數(shù).(Ⅰ)求證:數(shù)列為等比數(shù)列;(Ⅱ)若,求滿足條件的最大整數(shù)n.11.(2022?淄博一模)已知數(shù)列{an}滿足:a1=2,且.設(shè)bn=a2n﹣1.(1)證明:數(shù)列{bn+2}為等比數(shù)列,并求出{bn}的通項(xiàng)公式;(2)求數(shù)列{an}的前2n項(xiàng)和.12.(2021?3月份模擬)已知數(shù)列{an}滿足a1=2,an+1=an﹣,bn=an﹣.(1)求證:數(shù)列{bn}是等比數(shù)列;(2)設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn<.13.(2022?浙江開學(xué))已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=an+1﹣1,數(shù)列{bn}為等差數(shù)列,且2a4=3b3+1,S6=7b5.(Ⅰ)求{an}與{bn}的通項(xiàng)公式;(Ⅱ)記,求{cn}的前n項(xiàng)和為Tn.14.(2021?廣州二模)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1+2Sn﹣1=3Sn(n≥2).(1)求數(shù)列{an}的通項(xiàng)公式;(2)令,求數(shù)列{bn}的前n項(xiàng)和Tn.15.(2021?萍鄉(xiāng)二模)已知等比數(shù)列{an}各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和.若對(duì)任意正整數(shù)n,有Sn+2=4Sn+3恒成立,且bn=log2a2n.(1)求數(shù)列{an}的通項(xiàng)公式;(2)令,求數(shù)列{cn}的前n項(xiàng)和Tn.16.(2022?浙江開學(xué))已知數(shù)列{an}的前n項(xiàng)和為.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)為數(shù)列{bn}的前n項(xiàng)和,如果對(duì)于任意的n∈N*恒有Tn<A,求A的最小值.17.(2022春?雅安期末)已知數(shù)列{an}中,a1=2,且對(duì)任意正整數(shù)m,n都有am+n=am+an.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足:,(ⅰ)求數(shù)列{bn}的通項(xiàng)公式;(ⅱ)設(shè),若cn+1>cn對(duì)任意n∈N*恒成立,求實(shí)數(shù)t的取值范圍.18.(2022秋?拱墅區(qū)校級(jí)月考)已知公差為d的等差數(shù)列{an}和公比q<0的等比數(shù)列{bn}中,a1=b1=1,a2+b3=3,a3+b2=2.(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;(Ⅱ)令,抽去數(shù)列{cn}的第3項(xiàng)、第6項(xiàng)、第9項(xiàng)、…第3n項(xiàng)、…,余下的項(xiàng)的順序不變,構(gòu)成一個(gè)新數(shù)列{tn},求數(shù)列{tn}的前2023項(xiàng)和S2023.19.(2022秋?浙江月考)已知數(shù)列{an}的各項(xiàng)均為正數(shù),記Sn為{an}的前n項(xiàng)和,(n∈N*且n≥2).(1)求證:數(shù)列是等差數(shù)列,并求{an}的通項(xiàng)公式;(2)當(dāng)n∈N*,n≥2時(shí),求證:.20.(2022?寶雞模擬)已知{an}是等差數(shù)列,a1+a2+a3=12,a4=8.(1)求{an}的通項(xiàng)公式;(2)若對(duì)于任意n∈N+,點(diǎn)An(an,bn)都在曲線y=2x上,過(guò)An作x軸的垂線,垂足為Bn,記△OAnBn的面積為Sn,求數(shù)列{Sn}的前n項(xiàng)和Tn.21.(2022秋?重慶月考)已知數(shù)列{an}滿足a1=1,an+1=3an+1.(1)證明:是等比數(shù)列,并求{an}的通項(xiàng)公式;(2)證明:.22.(2022秋?皇姑區(qū)期中)已知數(shù)列{an}前n項(xiàng)積為Tn,且.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求證:.23.(2021秋?柳州月考)數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2,點(diǎn)(Sn,Sn+1)在直線y=上.(1)求證:數(shù)列是等差數(shù)列;(2)若數(shù)列{bn}滿足bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn.24.(2022秋?萊西市校級(jí)月考)記Sn為數(shù)列{an}的前n項(xiàng)和,已知a1=1,,且數(shù)列{4nSn+(2n+3)an}是等差數(shù)列.(1)證明:是等比數(shù)列,并求{an}的通項(xiàng)公式;(2)設(shè),求數(shù)列{bn}的前2n項(xiàng)和T2n.25.(2022秋?大連期中)已知數(shù)列{an}是公比為2的等比數(shù)列,a2,a3,a4﹣4成等差數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若,設(shè)數(shù)列{bn}的前n項(xiàng)和Tn,求證:1≤Tn<3.26.(2022秋?湖北月考)已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足,.(1)證明數(shù)列是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足,求數(shù)列{bn}的前n項(xiàng)和Tn.27.(2022秋?黃岡月考)已知數(shù)列{an}各項(xiàng)均為正數(shù)且滿足an2﹣(n﹣1)an﹣2n2+n=0,數(shù)列{bn}滿足b1=3,且bn+1=3bn+3n+1.(1)求{an},{bn}的通項(xiàng)公式;(2)若cn=bn+an,求{cn}的前n項(xiàng)和Tn.28.(2022秋?張掖期中)已知數(shù)列{an}的前n項(xiàng)和Sn=﹣an﹣()n﹣1+2,數(shù)列{bn}滿足bn=2nan.(1)證明:數(shù)列{bn}是等差數(shù)列;(2)設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.29.(2022秋?金鳳區(qū)校級(jí)期中)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=2且an+1=2an,數(shù)列{bn}滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求{an},{bn}的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為Tn,求Tn.30.(2022?南通模擬)已知數(shù)列{an}滿足:a1=1,且______,其中n∈N*,從①an+1﹣2an=n﹣1,②an+1﹣an=2n﹣1,③=2+三個(gè)條件中任選一個(gè)填入上面的橫線中,并完成下列問(wèn)題解答.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求Sn.31.(2022秋?長(zhǎng)春月考)已知數(shù)列{an}滿足:a1=2,nan+1+(n+1)=(n+2)an+(n+1)3.(Ⅰ)證明:數(shù)列是等差數(shù)列;(Ⅱ)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.32.(2022秋?長(zhǎng)沙期中)已知正項(xiàng)數(shù)列{an}滿足a1=2且.(1)求數(shù)列{an}的通項(xiàng)公式;(2)令,求數(shù)列{bn}的前2n+1項(xiàng)的和S2n+1.33.(2022秋?沙坪壩區(qū)校級(jí)月考)設(shè)數(shù)列{an}滿足a1=2,a2=6,且an+2=2an+1﹣an+2.等差數(shù)列{bn}的公差d大于0.已知a2=b2+3,且b1,b2,b5成等比數(shù)列.(1)求證:數(shù)列{an+1﹣an}為等差數(shù)列,并求{an}的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Tn.34.(2022秋?郴州月考)已知數(shù)列{an}中,a1=1,其前n項(xiàng)和為Sn,Sn+1=3Sn+1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=log3an+1,若數(shù)列的前n項(xiàng)和為Tn,求證:.35.(2022秋?襄陽(yáng)期中)已知數(shù)列{an}滿足2a1+22a2+…+2nan=n×2n+2﹣2n+1+2.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=,證明:≤b1+b2+…+bn<.36.(2022秋?秦皇島月考)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,當(dāng)n?2時(shí),2(n﹣1)Sn=2nSn﹣1+n2﹣n.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求證:.37.(2022秋?湖北期中)已知數(shù)列{an}的首項(xiàng)為4,且滿足,若.(1)求數(shù)列{bn}的通項(xiàng)公式;(2)數(shù)列{cn}中,c1=4,對(duì)任意m,n∈N*,都有,求數(shù)列{bn?cn}的前n項(xiàng)和Sn.38.(2022秋?煙臺(tái)期中)記Sn為數(shù)列{an}的前n項(xiàng)和,已知a1=1,Sn=n2an.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=,求證:Tn<.39.(2022秋?湖北期中)已知等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=2,b2=4,an=2log2bn,n∈N*.(1)求數(shù)列{an},{bn}的通項(xiàng)公式;(2)設(shè)數(shù)列{an}中不在數(shù)列{bn}中的項(xiàng)按從小到大的順序構(gòu)成數(shù)列{cn},記數(shù)列{cn}的前n項(xiàng)和為Sn,求S50.40.(2022秋?湖南月考)記各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和是Sn,已知an2+an=2Sn,n為正整數(shù).(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=tan(an)?tan(an+1),求數(shù)列{bn}的前n項(xiàng)和Tn.41.(2022秋?濰坊月考)在各項(xiàng)均不相等的等差數(shù)列{an}中,a1=1,且a1,a2,a5成等比數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn=2n+1﹣2.(1)求數(shù)列{an},{bn}的通項(xiàng)公式;(2)設(shè),數(shù)列{cn}的前n項(xiàng)和Tn,若不等式2Tn+n2>3loga(1﹣a)對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.42.(2022秋?玄武區(qū)校級(jí)月考)設(shè)數(shù)列{an}滿足a1=2,a2=6,且an+2=2an+1﹣an+2.(1)求證:數(shù)列{an+1﹣an}為等差數(shù)列,并求{an}的通項(xiàng)公式;(2)設(shè)bn=ancosnπ,求數(shù)列{bn}的前n項(xiàng)和Tn.43.(2022秋?鞍山期中)已知數(shù)列{an}的前n項(xiàng)和Sn=3n﹣1,數(shù)列{bn}滿足b1=﹣1,bn+1=bn+(2n﹣1).(1)求數(shù)列{an}、{bn}的通項(xiàng)公式.(2)若,求數(shù)列{cn}的前n項(xiàng)和Tn.44.(2022秋?濰坊月考)已知數(shù)列{an}中,a1=2,當(dāng)n≥2時(shí),(n﹣1)an=2nan﹣1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)cn=,數(shù)列{cn}中是否存在最大項(xiàng)與最小項(xiàng)?若存在,求出最大項(xiàng)與最小項(xiàng);若不存在,說(shuō)明理由.45.(2022秋?湖北月考)已知等差數(shù)列{an}的首項(xiàng)a1>0,記數(shù)列{an}的前n項(xiàng)和為,且數(shù)列為等差數(shù)列.(1)證明:數(shù)列為常數(shù)列;(2)設(shè)數(shù)列的前n項(xiàng)和為,求{Tn}的通項(xiàng)公式.46.(2022秋?遼寧期中)已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)cn=,數(shù)列{cn}的前n項(xiàng)和為Tn,是否存在正整數(shù)k,使得Tn<k2﹣3k對(duì)于n∈N+恒成立?若存在,求出k的最小值;若不存在,請(qǐng)說(shuō)明理由.47.(2022秋?湖北月考)已知數(shù)列{an}滿足aa3+…+an=n(n∈N+).(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=log3an,求數(shù)列{}的前n項(xiàng)和為Tn.48.(2022?開福區(qū)校級(jí)開學(xué))已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足(q﹣1)Sn=qan﹣1(q>0),n∈N*.(1)求數(shù)列{an}的通項(xiàng)公式;(2)當(dāng)q=2時(shí),數(shù)列{bn}滿足,求證:;(3)若對(duì)任意正整數(shù)n都有an+1≥n成立,求正實(shí)數(shù)q的取值范圍.49.(2021秋?沙坪壩區(qū)校級(jí)月考)已知數(shù)列{an}的前n項(xiàng)的為Sn,滿足,a1=1,a2=2.(1)記bn=anan+1,求{bn}的通項(xiàng)公式;(2)記cn=log2an﹣log2an+2,求{cn}的前63項(xiàng)和T63.50.(2022秋?沈北新區(qū)校級(jí)月考)已知數(shù)列{an}是等差數(shù)列,a2=3,a5=6,數(shù)列{bn}的前n項(xiàng)和為Sn,且2bn﹣Sn=2.(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;(Ⅱ)記,若數(shù)列{cn}的前n項(xiàng)和為Tn,證明:.

參考答案與試題解析一.解答題(共50小題)1.(2022秋?新泰市校級(jí)期中)已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,且滿足a1+a5=10,S4=16;數(shù)列{bn}滿足:b1+3b2+32b3+…+3n﹣1bn=,(n∈N*).(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;(Ⅱ)設(shè)cn=anbn+,求數(shù)列{cn}的前n項(xiàng)和Tn.【答案】(I)an=2n﹣1,bn=.(Ⅱ)1﹣+.【解答】解:(I)設(shè)等差數(shù)列{an}的公差為d,∵a1+a5=10,S4=16,∴2a1+4d=10,4a1+6d=16,聯(lián)立解得a1=1,d=2,∴an=1+2(n﹣1)=2n﹣1.?dāng)?shù)列{bn}滿足:b1+3b2+32b3+…+3n﹣1bn=,(n∈N*),∴n≥2時(shí),b1+3b2+32b3+…+3n﹣2=,相減可得3n﹣1bn=,解得bn=.(Ⅱ)由(I)可得:cn=anbn+=+,==(﹣),∴數(shù)列的前n項(xiàng)和=(1﹣+﹣+…+﹣)=(1﹣)=.設(shè)數(shù)列{}的前n項(xiàng)和為An,則An=+++…+,An=+++…++,∴An=+2(++…+)﹣=+2×﹣,化為An=1﹣.∴數(shù)列{cn}的前n項(xiàng)和Tn=1﹣+.2.(2022秋?鄒城市期中)已知數(shù)列{an},a1=2,且滿足n∈N*,有an?an+1=22n+1.(1)求數(shù)列{an}的通項(xiàng)公式an;(2)若bn=an(an﹣1),設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,試求和:.【答案】(1)an=2n.(2)×(1﹣).【解答】解:(1)∵an?an+1=22n+1,∴==4=,取n=1時(shí),a1a2=23,a1=2,解得a2=4.∴=2,∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為2,公比為2.∴an=2n.(2)bn=an(an﹣1)=2n(2n﹣1)=4n﹣2n,∴數(shù)列{bn}的前n項(xiàng)和為Sn=﹣=,∴==×(﹣),∴=×(1﹣+﹣+…+﹣)=×(1﹣).3.(2022秋?浙江月考)在下面三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中并作答.①nan+1=(n+1)an+1;②;③.已知Sn為數(shù)列{an}的前n項(xiàng)和,滿足a1=1,an>0,①.(1)求{an}的通項(xiàng)公式;(2)若bn=[lg(an+1)],其中[x]表示不超過(guò)x的最大整數(shù),求數(shù)列{bn}的前100項(xiàng)和T100.【答案】(1)an=2n﹣1.(2)147.【解答】解:(1)選擇條件①.由nan+1﹣(n+1)an=1,得(n+1)an+2﹣(n+2)an+1=1,兩式作差得(n+1)(an+an+2)﹣2(n+1)an+1=0,即an+an+2=2an+1,故{an}為等差數(shù)列,當(dāng)n=1時(shí),由條件①知a2﹣2a1=1,a2=3,故公差d=a2﹣a1=2,所以an=2n﹣1,選擇條件②,當(dāng)n=1時(shí),可知a1=1,,當(dāng)n≥2時(shí),,兩式相減得,即(an+an﹣1)(an﹣an﹣1﹣2)=0,又an>0,所以an﹣an﹣1=2,所以{an}是1為首項(xiàng),2為公差的等差數(shù)列,所以an=2n﹣1,選擇條件③,由,得為常數(shù)列,所以,得,當(dāng)n≥2時(shí),,又a1=1也符合上式,所以an=2n﹣1.(2)由(1)可得bn=[lg(2n)],當(dāng)lg(2n)=1時(shí),n=5;當(dāng)lg(2n)=2時(shí),n=50;當(dāng)lg(2n)=3時(shí),n=500,所以T100=[lg2]+[lg4]+?+[lg8]+[lg10]+?+[lg98]+[lg100]+?+[lg200]=4×0+45×1+51×2=147.4.(2022秋?麗水月考)在數(shù)列{an}中,a1=,an﹣an+1=2an+1an(n∈N*).(1)求數(shù)列{an}的通項(xiàng)公式;(2)求滿足不等式a1a2+a2a3+…+akak+1<成立的k的最大值.【答案】(1)an=;(2)8.【解答】解:(1)由an﹣an+1=2an+1an(n∈N*),可得﹣=2,可得{}是首項(xiàng)為3,公差為2的等差數(shù)列,則=3+2(n﹣1)=2n+1,即有an=;(2)anan+1==(﹣),所以a1a2+a2a3+…+akak+1=(﹣+﹣+...+﹣)=(﹣)<,可得>,即2k+3<21,即有k<9,則整數(shù)k的最大值為8.5.(2022秋?寧波月考)已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an﹣2(n∈N*).(1)求數(shù)列{an}的通項(xiàng)公式;(2)令bn=an﹣4n,求數(shù)列的前n項(xiàng)和Tn.【答案】(1)an=2n;(2)Tn=n﹣8+.【解答】解:(1)在Sn=2an﹣2中,令n=1,則a1=2a1﹣2,即a1=2,當(dāng)n≥2時(shí),有Sn﹣1=2an﹣1﹣2,兩式相減得,an=2an﹣2an﹣1,即an=2an﹣1(n≥2),所以數(shù)列{an}是首項(xiàng)為2,公比為2的等比數(shù)列,所以數(shù)列an=2?2n﹣1=2n.(2)bn=an﹣4n=2n﹣4n,所以==1﹣,設(shè)數(shù)列{}的前n項(xiàng)和為Qn,則Tn=n﹣Qn,而Qn=+++…++,所以Qn=+++…++,兩式相減得,Qn=++++…+﹣=﹣=4﹣,所以Qn=8﹣,所以Tn=n﹣Qn=n﹣8+.6.(2022秋?溫州月考)已知數(shù)列{an}是等差數(shù)列,a1=1,且a1,a2,a5﹣1成等比數(shù)列.給定k∈N*,記集合{n|k≤an≤2k,n∈N*}的元素個(gè)數(shù)為bk.(1)求b1,b2的值;(2)求最小自然數(shù)n的值,使得b1+b2+…+bn>2022.【答案】(1)b1=2,b2=3;(2)當(dāng)最小自然數(shù)n的值為11時(shí),使得b1+b2+…+bn>2022.【解答】解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a1=1,且a1,a2,a5﹣1成等比數(shù)列,∴=a1?(a5﹣1),即(1+d)2=4d,解得d=1,∴an=1+n﹣1=n,∵集合{n|k≤an≤2k,n∈N*}的元素個(gè)數(shù)為bk,∴當(dāng)k=1時(shí),集合{n|1≤n≤2,n∈N*}的元素個(gè)數(shù)為b1,即b1=2;當(dāng)k=2時(shí),集合{n|2≤n≤4,n∈N*}的元素個(gè)數(shù)為b2,即b2=3,故b1=2,b2=3;(2)集合{n|k≤an≤2k,n∈N*}的元素個(gè)數(shù)為bk,即集合{n|k≤n≤2k,n∈N*}的元素個(gè)數(shù)為bk,∴bk=2k﹣k+1,即bn=2n﹣n+1,∴b1+b2+…+bn=(2﹣1+1)+(22﹣2+1)+...+(2n﹣n+1)=(2+22+...+2n)﹣+n=﹣+=2(2n﹣1)﹣+>2022,令cn=2n+1﹣2﹣+,則cn+1﹣cn=(2n+2﹣2﹣+)﹣(2n+1﹣1﹣+)=2n+1﹣n>0,∴數(shù)列{cn}單調(diào)遞增,當(dāng)n=10時(shí),2(2n﹣1)﹣+=2(210﹣1)﹣50+5=2001<2022,當(dāng)n=11時(shí),2(2n﹣1)﹣+=2(211﹣1)﹣+=4039>2022,∴當(dāng)最小自然數(shù)n的值為11時(shí),使得b1+b2+…+bn>2022.7.(2022秋?南山區(qū)校級(jí)期中)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S5=35,且a4是a1與a13的等比中項(xiàng),數(shù)列{bn}的前n項(xiàng)和.(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;(2)若a1<4,對(duì)任意n∈N*總有恒成立,求實(shí)數(shù)λ的最小值.【答案】(1)數(shù)列{an}的通項(xiàng)公式an=7或an=2n+1,數(shù)列{bn}的通項(xiàng)公式為bn=8n+1;(2)實(shí)數(shù)λ的最小值為.【解答】解:(1)設(shè)等差數(shù)列{an}的公差為d,∵S5=35,且a4是a1與a13的等比中項(xiàng),∴,即3d(3d﹣2a1)=0,a1+2d=7,解得d=0或d=2,當(dāng)d=0時(shí),a1=7,此時(shí)數(shù)列{an}的通項(xiàng)公式an=7,當(dāng)d=2時(shí),a1=3,此時(shí)數(shù)列{an}的通項(xiàng)公式an=3+2(n﹣1)=2n+1,∵數(shù)列{bn}的前n項(xiàng)和①,當(dāng)n=1時(shí),b1=T1=9,當(dāng)n≥2時(shí),Tn﹣1=4(n﹣1)2+5(n﹣1)②,由①﹣②得n≥2時(shí),bn=4n2+5n﹣[4(n﹣1)2+5(n﹣1)]=8n+1,當(dāng)n=1時(shí),b1=9,∴數(shù)列{bn}的通項(xiàng)公式為bn=8n+1;(2)由(1)得an=7或an=2n+1,bn=8n+1,∵a1<4,∴an=2n+1,∴等差數(shù)列{an}的前n項(xiàng)和為Sn==n(n+2),令cn===(﹣),∴++...+=c1+c2+...+cn=(1﹣+﹣+...+﹣)=(1﹣),∵(1﹣)隨n的增大而增大,∴(1﹣)<恒成立,∵對(duì)任意n∈N*總有恒成立,∴λ≥,故實(shí)數(shù)λ的最小值為.8.(2022秋?浙江月考)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,Sn=2+an+1.(n∈N*).(1)證明:數(shù)列{Sn﹣2}為等比數(shù)列;(2)設(shè)bn=,記數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn<1.【答案】(1)證明過(guò)程請(qǐng)看解答;(2)證明過(guò)程請(qǐng)看解答.【解答】證明:(1)在Sn=2+an+1中,令n=1,有a1=2+a2,所以a2=1,由Sn=2+an+1,知當(dāng)n≥2時(shí),Sn﹣1=2+an,兩式相減得,an=an+1﹣an,即an+1=2an(n≥2),所以數(shù)列{an}從第二項(xiàng)開始,是公比為2的等比數(shù)列,所以an=,所以Sn=3+1+2+22+…+2n﹣2=3+=2n﹣1+2,所以Sn﹣2=2n﹣1+2﹣2=2n﹣1,是首項(xiàng)為1,公比為2的等比數(shù)列,得證.(2)由(1)知an=,Sn=2n﹣1+2,所以bn====2(﹣),所以Tn=2[(﹣)+(﹣)+…+(﹣)]=2(﹣)=1﹣<1,得證.9.(2022秋?上城區(qū)校級(jí)月考)已知各項(xiàng)均為正數(shù)的無(wú)窮數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,.(1)證明數(shù)列{an}是等差數(shù)列,并求出{an}的通項(xiàng)公式;(2)設(shè)數(shù)列{bn}滿足,證明:.【答案】(1)證明見解答,an=n;(2)證明見解答.【解答】解:(1)證明:∵,∴,又,∴,∴,∴an=Sn﹣Sn﹣1==n,(n≥2),又a1=1,∴an=n,∴an+1﹣an=n+1﹣n=1,∴數(shù)列{an}是等差數(shù)列,且an=n;(2)證明:由(1)可得=,∴b1+b2+???+bn=+???+[]=<,故原命題成立.10.(2022?浙江開學(xué))已知數(shù)列{an}的首項(xiàng)為,對(duì)于任意的正自然數(shù).(Ⅰ)求證:數(shù)列為等比數(shù)列;(Ⅱ)若,求滿足條件的最大整數(shù)n.【答案】(Ⅰ)證明見解析;(Ⅱ)98.【解答】(Ⅰ)證明:由題意,,且,所以數(shù)列是以1為首項(xiàng),為公比的等比數(shù)列.(Ⅱ)解:,所以,所以,,設(shè),則cn為遞增數(shù)列.又,所以nmax=98.11.(2022?淄博一模)已知數(shù)列{an}滿足:a1=2,且.設(shè)bn=a2n﹣1.(1)證明:數(shù)列{bn+2}為等比數(shù)列,并求出{bn}的通項(xiàng)公式;(2)求數(shù)列{an}的前2n項(xiàng)和.【答案】(1)證明見解答,bn=2n+1﹣2;(2)2n+3﹣3n﹣8.【解答】解:(1)證明:bn+1=a2n+1=2a2n=2(a2n﹣1+1)=2bn+2,所以=2,又b1+2=a1+2=4,所以{bn+2}是首項(xiàng)為4,公比為2的等比數(shù)列,則bn+2=4?2n﹣1=2n+1,所以bn=2n+1﹣2;(2)數(shù)列{an}的前2n項(xiàng)和為S2n=a1+a2+a3+...+a2n=(a1+a3+a5+...+a2n﹣1)+(a2+a4+...+a2n)=(a1+a3+a5+...+a2n﹣1)+(a1+a3+...+a2n﹣1+n)=2(a1+a3+a5+...+a2n﹣1)+n=2(b1+b2+...+bn)+n=2×(22+23+...+2n+1﹣2n)+n=2×﹣3n=2n+3﹣3n﹣8.12.(2021?3月份模擬)已知數(shù)列{an}滿足a1=2,an+1=an﹣,bn=an﹣.(1)求證:數(shù)列{bn}是等比數(shù)列;(2)設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn<.【答案】(1)證明過(guò)程見解答;(2)證明過(guò)程見解答.【解答】證明:(1)∵a1=2,an+1=an﹣,bn=an﹣,∴b1=a1﹣1=1,===,∴數(shù)列{bn}是首項(xiàng)為1,公比為的等比數(shù)列;(2)由(1)可得:bn=,∴an=bn+=+,∴Sn=(1+++…+)+(1+++…+)=+=﹣﹣<.13.(2022?浙江開學(xué))已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=an+1﹣1,數(shù)列{bn}為等差數(shù)列,且2a4=3b3+1,S6=7b5.(Ⅰ)求{an}與{bn}的通項(xiàng)公式;(Ⅱ)記,求{cn}的前n項(xiàng)和為Tn.【答案】(Ⅰ)an=2n﹣1,n∈N*;bn=2n﹣1,n∈N*.(Ⅱ)Tn=6﹣.【解答】解:(Ⅰ)由題意,當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=an+1﹣1﹣(an﹣1)=an+1﹣an,整理,得an+1=2an,∵a1=1,∴數(shù)列{an}是以1為首項(xiàng),2為公比的等比數(shù)列,∴an=1?2n﹣1=2n﹣1,n∈N*,設(shè)等差數(shù)列{bn}的公差為d,則3b3+1=2a4=2?23=16,解得b3=5,7b5=S6==63,解得b5=9,∴公差d===2,∵b1=b3﹣2d=5﹣2×2=1,∴bn=1+2?(n﹣1)=2n﹣1,n∈N*.(Ⅱ)由(Ⅰ)得,=,則Tn=c1+c2+???+cn=+++???+,Tn=++???++,兩式相減,可得Tn=1+1+++???+﹣=1+﹣=3﹣,∴Tn=6﹣.14.(2021?廣州二模)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1+2Sn﹣1=3Sn(n≥2).(1)求數(shù)列{an}的通項(xiàng)公式;(2)令,求數(shù)列{bn}的前n項(xiàng)和Tn.【答案】見試題解答內(nèi)容【解答】解:(1)由題意,設(shè)等比數(shù)列{an}的公比為q,則當(dāng)q=1時(shí),Sn+1+2Sn﹣1=(n+1)a1+2(n﹣1)a1=3n﹣1,3Sn=3na1=3n,∴Sn+1+2Sn﹣1≠3Sn,顯然q=1不符合題意,故q≠1,當(dāng)q≠1時(shí),Sn==,Sn+1=,Sn﹣1=,∵Sn+1+2Sn﹣1=3Sn,∴+2=3,即1﹣qn+1+2(1﹣qn﹣1)=3(1﹣qn),化簡(jiǎn),得qn﹣1(q﹣2)(q﹣1)=0,∵q≠1且q≠0,∴q=2,∴an=1?2n﹣1=2n﹣1,n∈N*.(2)由(1)知,Sn=,Sn+1=,則===﹣,∴Tn=b1+b2+…+bn=﹣+﹣+…+﹣=1﹣.15.(2021?萍鄉(xiāng)二模)已知等比數(shù)列{an}各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和.若對(duì)任意正整數(shù)n,有Sn+2=4Sn+3恒成立,且bn=log2a2n.(1)求數(shù)列{an}的通項(xiàng)公式;(2)令,求數(shù)列{cn}的前n項(xiàng)和Tn.【答案】(1)an=2n﹣1,n∈N*;(2)Tn=.【解答】解:(1)由題意,設(shè)等比數(shù)列{an}的公比為q,首項(xiàng)為a1,∵等比數(shù)列{an}各項(xiàng)均為正數(shù),∴a1>0,q>0,由Sn+2=4Sn+3,可得Sn+1=4Sn﹣1+3,兩式相減,可得an+2=4an,則q2=4,即q=2,當(dāng)n=1時(shí),有S3=4S1+3恒成立,即a1+a2+a3=4a1+3,∵a2=2a1,a3=4a1,∴2a1+4a1=3a1+3,解得a1=1,∴an=1?2n﹣1=2n﹣1,n∈N*.(2)由(1)知,bn=log2a2n=log222n﹣1=2n﹣1,∴==,則Tn=c1+c2+???+cn=?(1﹣)+?(﹣)+???+?(﹣)=?(1﹣+﹣+???+﹣)=?(1﹣)=.16.(2022?浙江開學(xué))已知數(shù)列{an}的前n項(xiàng)和為.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)為數(shù)列{bn}的前n項(xiàng)和,如果對(duì)于任意的n∈N*恒有Tn<A,求A的最小值.【答案】(1);(2)2.【解答】解:(1)因?yàn)椋╪+3)Sn=nSn+1,所以,由累乘法得,則,又a1=1,所以,當(dāng)n=1時(shí),a1=1,n≥2時(shí),時(shí)也符合,所以;(2),則,又對(duì)于任意的n∈N﹣恒有Tn<A,∴A≥2,即A的最小值為2.17.(2022春?雅安期末)已知數(shù)列{an}中,a1=2,且對(duì)任意正整數(shù)m,n都有am+n=am+an.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足:,(ⅰ)求數(shù)列{bn}的通項(xiàng)公式;(ⅱ)設(shè),若cn+1>cn對(duì)任意n∈N*恒成立,求實(shí)數(shù)t的取值范圍.【答案】(1);(2)(i);(ii).【解答】解:(1)在am+n=am+an中令m=1,則有an+1=an+a1,∴,所以數(shù)列{an}首項(xiàng)為2,公差為2的等差數(shù)列,故數(shù)列{an}的通項(xiàng)公式為.(2)(i)由,得,兩式相減有:,∴,所以數(shù)列{bn}的通項(xiàng)公式;(ii)由(I)知,所以2×3n>t(﹣1)n﹣1(2n+1+2+2n+2+2),整理得,①當(dāng)n為奇數(shù)時(shí),,而,所以是遞增數(shù)列,當(dāng)n=1時(shí)有最小值,所以,②當(dāng)n為偶數(shù)時(shí),是遞減數(shù)列,當(dāng)n=2時(shí)有最大值,所以,綜上所述,t的取值范圍是.18.(2022秋?拱墅區(qū)校級(jí)月考)已知公差為d的等差數(shù)列{an}和公比q<0的等比數(shù)列{bn}中,a1=b1=1,a2+b3=3,a3+b2=2.(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;(Ⅱ)令,抽去數(shù)列{cn}的第3項(xiàng)、第6項(xiàng)、第9項(xiàng)、…第3n項(xiàng)、…,余下的項(xiàng)的順序不變,構(gòu)成一個(gè)新數(shù)列{tn},求數(shù)列{tn}的前2023項(xiàng)和S2023.【答案】(I)an=n,bn=(﹣1)n﹣1.(Ⅱ)數(shù)列{tn}的前2023項(xiàng)和S2023=.【解答】解:(I)∵a1=b1=1,a2+b3=3,a3+b2=2,q<0,∴1+d+q2=3,1+2d+q=2,q<0,解得d=1,q=﹣1.∴an=1+n﹣1=n,bn=(﹣1)n﹣1.(Ⅱ)cn=3n×[(﹣1)n﹣1]2=3n,數(shù)列{tn}的前2023項(xiàng)和S2023=3+32+33+34+…+33033+33034﹣(33+36+…+33030+33033)=﹣=.19.(2022秋?浙江月考)已知數(shù)列{an}的各項(xiàng)均為正數(shù),記Sn為{an}的前n項(xiàng)和,(n∈N*且n≥2).(1)求證:數(shù)列是等差數(shù)列,并求{an}的通項(xiàng)公式;(2)當(dāng)n∈N*,n≥2時(shí),求證:.【答案】(1)an=2n﹣1.(2)證明過(guò)程見解析.【解答】解:(1)∵且n≥2),∴當(dāng)n≥2時(shí),,∴,又∵an>0,所以,∴,∴數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列,∴,所以.∴當(dāng)n≥2時(shí),,又∵a1=1滿足上式,∴數(shù)列{an}的通項(xiàng)公式為an=2n﹣1.另解:當(dāng)n≥2時(shí),,當(dāng)n=1時(shí),a1=1,滿足上式,所以{an}的通項(xiàng)公式為an=2n﹣1.證明:(2)當(dāng)n≥2時(shí),,故所以對(duì)n∈N*,n≥2,都有.20.(2022?寶雞模擬)已知{an}是等差數(shù)列,a1+a2+a3=12,a4=8.(1)求{an}的通項(xiàng)公式;(2)若對(duì)于任意n∈N+,點(diǎn)An(an,bn)都在曲線y=2x上,過(guò)An作x軸的垂線,垂足為Bn,記△OAnBn的面積為Sn,求數(shù)列{Sn}的前n項(xiàng)和Tn.【答案】(1)an=2n;(2).【解答】解:(1)數(shù)列{an}是等差數(shù)列,a1+a2+a3=12,a4=8,設(shè)公差為d;所以,解得;故an=2n;(2)由于An(an,bn)都在曲線y=2x上,故;當(dāng)n≠0時(shí),,所以①,②,①﹣②得:=;故.21.(2022秋?重慶月考)已知數(shù)列{an}滿足a1=1,an+1=3an+1.(1)證明:是等比數(shù)列,并求{an}的通項(xiàng)公式;(2)證明:.【答案】(1)證明過(guò)程見解答,;(2)證明過(guò)程見解答.【解答】(1)證明:因?yàn)閍n+1=3an+1,所以,所以是以3為公比的等比數(shù)列,又a1=1,則,所以,則;(2)證明:由(1)可知,,當(dāng)n=1時(shí),,當(dāng)n≥2時(shí),3n﹣1>3n﹣3n﹣1,則,所以=.22.(2022秋?皇姑區(qū)期中)已知數(shù)列{an}前n項(xiàng)積為Tn,且.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求證:.【答案】(1)證明過(guò)程見解析;(2)證明過(guò)程見解析.【解答】證明:(1)數(shù)列{an}前n項(xiàng)積為Tn,且,整理得:,由于,所以,整理得(常數(shù)),當(dāng)n=1時(shí),故數(shù)列是以2為首項(xiàng),1為公差的等差數(shù)列;(2)由(1)得:,故,所以,由于==.所以23.(2021秋?柳州月考)數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2,點(diǎn)(Sn,Sn+1)在直線y=上.(1)求證:數(shù)列是等差數(shù)列;(2)若數(shù)列{bn}滿足bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn.【答案】(1)證明過(guò)程見解析;(2).【解答】解:(1)∵點(diǎn)(Sn,Sn+1)在直線上,∴,同除以n+1,則有,∴,∴數(shù)列是以為首項(xiàng),﹣1為公差的等差數(shù)列.(2)由(1)可知,∴,∴當(dāng)n=1時(shí),a1=S1=﹣1+3=2;當(dāng)n≥2時(shí),,經(jīng)檢驗(yàn),當(dāng)n=1時(shí)也成立.∴.∵Tn=b1+b2+?+bn﹣1+bn,∴,①,∴,②,∴,∴.24.(2022秋?萊西市校級(jí)月考)記Sn為數(shù)列{an}的前n項(xiàng)和,已知a1=1,,且數(shù)列{4nSn+(2n+3)an}是等差數(shù)列.(1)證明:是等比數(shù)列,并求{an}的通項(xiàng)公式;(2)設(shè),求數(shù)列{bn}的前2n項(xiàng)和T2n.【答案】(1)證明見解析;;(2).【解答】解:(1)證明:∵a1=1,,∴S1=1,,設(shè)cn=4nSn+(2n+3)an,則c1=9,c2=18,又∵數(shù)列{cn}為等差數(shù)列,∴cn=9n,∴4nSn+(2n+3)an=9n,∴,當(dāng)n≥2時(shí),,∴,∴,又∵2n+1≠0,∴,即:,又∵,∴是以1為首項(xiàng),為公比的等比數(shù)列,∴,即;(2)∵,且,∴,∴=,∴.25.(2022秋?大連期中)已知數(shù)列{an}是公比為2的等比數(shù)列,a2,a3,a4﹣4成等差數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若,設(shè)數(shù)列{bn}的前n項(xiàng)和Tn,求證:1≤Tn<3.【答案】(1)an=2n,n∈N*;(2)證明見解答過(guò)程.【解答】(1)解:依題意,由a2,a3,a4﹣4成等差數(shù)列,可知2a3=a2+a4﹣4,∵數(shù)列{an}是公比為2的等比數(shù)列,∴,即8a1=2a1+8a1﹣4,解得a1=2,∴,n∈N*.(2)證明:由(1),可得,則Tn=b1+b2+???+bn=,,兩式相減,可得====.∴,又∵{Tn}是遞增數(shù)列,∴Tn≥T1=1,∴1≤Tn<3.26.(2022秋?湖北月考)已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足,.(1)證明數(shù)列是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足,求數(shù)列{bn}的前n項(xiàng)和Tn.【答案】(1)證明見解答過(guò)程,,n∈N*;(2).【解答】(1)證明:依題意,由,可得,即,兩邊取倒數(shù),可得,即,∵,∴數(shù)列是以2為首項(xiàng),2為公差的等差數(shù)列,∴,∴,n∈N*.(2)解:由(1),可得,則Tn=b1+b2+???+bn=[1+?(1﹣)]+[1+?(﹣)]+???+[1+?(﹣)]====.27.(2022秋?黃岡月考)已知數(shù)列{an}各項(xiàng)均為正數(shù)且滿足an2﹣(n﹣1)an﹣2n2+n=0,數(shù)列{bn}滿足b1=3,且bn+1=3bn+3n+1.(1)求{an},{bn}的通項(xiàng)公式;(2)若cn=bn+an,求{cn}的前n項(xiàng)和Tn.【答案】(1)an=2n﹣1,n∈N*;bn=n?3n,n∈N*.(2)Tn=n2+?3n+1+.【解答】解:(1)依題意,由an2﹣(n﹣1)an﹣2n2+n=0,可轉(zhuǎn)化為(an+n)[an﹣(2n﹣1)]=0,∵an>0,n∈N*,∴an+n>0,n∈N*,∴an﹣(2n﹣1)=0,故an=2n﹣1,n∈N*,對(duì)于數(shù)列{bn}:由bn+1=3bn+3n+1,兩邊同時(shí)乘以,可得=+1,∵=1,∴數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列,∴=1+1?(n﹣1)=n,∴bn=n?3n,n∈N*.(2)由題意及(1),可得Tn=c1+c2+???+cn=(b1+a1)+(b2+a2)+???+(bn+an)=(a1+a2+???+an)+(b1+b2+???+bn)=[1+3+5+???+(2n﹣1)]+(b1+b2+???+bn)=+(b1+b2+???+bn)=n2+(b1+b2+???+bn),令Mn=b1+b2+???+bn,則Mn=b1+b2+???+bn=1?31+2?32+3?33+???+n?3n,3Mn=1?32+2?33+???+(n﹣1)?3n+n?3n+1,兩式相減,可得﹣2Mn=1?31+1?32+1?33+???+1?3n﹣n?3n+1=﹣n?3n+1=﹣?3n+1﹣,∴Mn=?3n+1+,∴Tn=n2+(b1+b2+???+bn)=n2+Mn=n2+?3n+1+.28.(2022秋?張掖期中)已知數(shù)列{an}的前n項(xiàng)和Sn=﹣an﹣()n﹣1+2,數(shù)列{bn}滿足bn=2nan.(1)證明:數(shù)列{bn}是等差數(shù)列;(2)設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.【答案】(1)證明見解答過(guò)程;(2)Tn=2﹣.【解答】(1)證明:由題意,當(dāng)n=1時(shí),a1=S1=﹣a1﹣()1﹣1+2,解得a1=,當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=﹣an﹣()n﹣1+2+an﹣1+()n﹣2﹣2=﹣an+an﹣1+()n﹣1,整理,得2an=an﹣1+()n﹣1,兩邊同時(shí)乘以2n﹣1,可得2nan=2n﹣1an﹣1+1,即bn=bn﹣1+1,∵b1=21a1=2×=1,∴數(shù)列{bn}是以1為首項(xiàng),1為公差的等差數(shù)列.(2)解:由(1),得bn=1+1?(n﹣1)=n,n∈N*,則an==,n∈N*,∴cn=====2(﹣),故Tn=c1+c2+???+cn}=2?(﹣)+2?(﹣)+???+2?(﹣)=2?(﹣+﹣+???+﹣)=2?(﹣)=2﹣.29.(2022秋?金鳳區(qū)校級(jí)期中)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=2且an+1=2an,數(shù)列{bn}滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求{an},{bn}的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為Tn,求Tn.【答案】(1)證明見解答過(guò)程,;(2).【解答】(1)證明:由題意,可知數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,故an=2?2n﹣1=2n,n∈N*,又由,兩邊倒過(guò)來(lái),可得==+3,∵=a1=2,∴數(shù)列是以2為首項(xiàng),3為公差的等差數(shù)列,∴=2+3(n﹣1)=3n﹣1,∴bn=,n∈N*.(2)解:由(1)得,=(3n﹣1)?2n,則Tn=2?21+5?22+8?23+???+(3n﹣1)?2n,2Tn=2?22+5?23+???+(3n﹣4)?2n+(3n﹣1)?2n+1,兩式相減,可得﹣Tn=2?21+3?22+3?23+???+3?2n﹣(3n﹣1)?2n+1=4+3?﹣(3n﹣1)?2n+1=﹣(3n﹣4)?2n+1﹣8,∴Tn=(3n﹣4)?2n+1+8.30.(2022?南通模擬)已知數(shù)列{an}滿足:a1=1,且______,其中n∈N*,從①an+1﹣2an=n﹣1,②an+1﹣an=2n﹣1,③=2+三個(gè)條件中任選一個(gè)填入上面的橫線中,并完成下列問(wèn)題解答.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求Sn.【答案】(1)條件①②③的答案均為:an=2n﹣n,n∈N*.(2)Sn=﹣.【解答】解:(1)方案一:選條件①依題意,由an+1﹣2an=n﹣1,可得an+1=2an+n﹣1,兩邊同時(shí)加上n+1,可得an+1+(n+1)=2an+n﹣1+n+1=2(an+n),∵a1+1=1+1=2,∴數(shù)列{an+n}是以2為首項(xiàng),2為公比的等比數(shù)列,∴an+n=2?2n﹣1=2n,∴an=2n﹣n,n∈N*.方案二:選條件②依題意,由an+1﹣an=2n﹣1,可知a1=1,a2﹣a1=21﹣1,a3﹣a2=22﹣1,???,an﹣an﹣1=2n﹣1﹣1,各項(xiàng)相加,可得an=1+(21﹣1)+(22﹣1)+???+(2n﹣1﹣1)=(21+22+???+2n﹣1)﹣(n﹣2)=﹣n+2=2n﹣n,故an=2n﹣n,n∈N*.方案三:選條件③由題意,可知=2+==,即=對(duì)于n∈N*恒成立,∴==???==1,∴an=2n﹣n,n∈N*.(2)由題意及(1),可得bn===?(﹣),則Sn=b1+b2+b3+???+bn﹣1+bn=?(1﹣)+?(﹣)+?(﹣)+???+?(﹣)+?(﹣)=?(1﹣+﹣+﹣+???+﹣+﹣)=?(1+﹣﹣)=﹣.31.(2022秋?長(zhǎng)春月考)已知數(shù)列{an}滿足:a1=2,nan+1+(n+1)=(n+2)an+(n+1)3.(Ⅰ)證明:數(shù)列是等差數(shù)列;(Ⅱ)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.【答案】(Ⅰ)證明見解答過(guò)程;(Ⅱ)Sn=﹣.【解答】(Ⅰ)證明:依題意,由nan+1+(n+1)=(n+2)an+(n+1)3,可得nan+1﹣(n+2)an=(n+1)3﹣(n+1)=n(n+1)(n+2),兩邊同時(shí)乘以,可得﹣=1,∵==1,∴數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列.(Ⅱ)解:由(Ⅰ),可得=1+1?(n﹣1)=n,則an=n2(n+1),故bn====﹣,∴Sn=b1+b2+???+bn=﹣+﹣+???+﹣=﹣=﹣.32.(2022秋?長(zhǎng)沙期中)已知正項(xiàng)數(shù)列{an}滿足a1=2且.(1)求數(shù)列{an}的通項(xiàng)公式;(2)令,求數(shù)列{bn}的前2n+1項(xiàng)的和S2n+1.【答案】(1),n∈N*;(2).【解答】解:(1)依題意,由,可得(an+1+3an)(an+1﹣2an)=0,∵an>0,∴an+1+3an>0,∴an+1=2an,即為常數(shù),∴數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,∴an=2?2n﹣1=2n,n∈N*.(2)由(1),可得,故S2n+1=b1+b2+b3+b4+???+b2n+b2n+1=(b1+b3+???+b2n+1)+(b2+b4+???+b2n)=[2+6+???+2(2n+1)]+(22+24+???+22n)==.33.(2022秋?沙坪壩區(qū)校級(jí)月考)設(shè)數(shù)列{an}滿足a1=2,a2=6,且an+2=2an+1﹣an+2.等差數(shù)列{bn}的公差d大于0.已知a2=b2+3,且b1,b2,b5成等比數(shù)列.(1)求證:數(shù)列{an+1﹣an}為等差數(shù)列,并求{an}的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Tn.【答案】(1)證明見解析,;(2).【解答】(1)證明:因?yàn)閍n+2=2an+1﹣an+2,所以(an+2﹣an+1)﹣(an+1﹣an)=2,又a2﹣a1=4,所以數(shù)列{an+1﹣an}是以4為首項(xiàng),2為公差的等差數(shù)列,則an+1﹣an=2n+2,當(dāng)n≥2則an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+(an﹣2﹣an﹣3)+…+(a2﹣a1)+a1=2n+2(n﹣1)+2(n﹣2)+…+2=,n=1成立,所以;(2)解:由a2=b2+3=b1+d+3=6,得b2=3,又b1,b2,b5成等比數(shù)列,使用,即9=b1(b1+4d)=(3﹣d)(3﹣d+4d),解得d=2(d=0舍去),所以bn=b2+2(n﹣2)=2n﹣1,則,所以.34.(2022秋?郴州月考)已知數(shù)列{an}中,a1=1,其前n項(xiàng)和為Sn,Sn+1=3Sn+1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=log3an+1,若數(shù)列的前n項(xiàng)和為Tn,求證:.【答案】(1)故;(2)證明過(guò)程見解析.【解答】解:(1)由題意得Sn+1=3Sn+1①,令n=1得a1+a2=3a1+1,結(jié)合a1=1,所以a2=3,當(dāng)n≥2時(shí),Sn=3Sn﹣1+1②,①﹣②得Sn+1﹣Sn=3(Sn﹣Sn﹣1)(n≥2),化簡(jiǎn)得an+1=3an,又,所以(n∈N*),故{an}是首項(xiàng)為1,公比為3的等比數(shù)列,故.(2)證明:由(1)知,則,所以,,=,又n∈N*,所以.35.(2022秋?襄陽(yáng)期中)已知數(shù)列{an}滿足2a1+22a2+…+2nan=n×2n+2﹣2n+1+2.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=,證明:≤b1+b2+…+bn<.【答案】(1){an}的通項(xiàng)公式為an=2n+1;(2)證明見解析.【解答】解:(1)∵2a1+22a2+…+2nan=n×2n+2﹣2n+1+2①,∴當(dāng)n=1時(shí),2a1=23﹣22+2,解得a1=3,當(dāng)n≥2時(shí),2a1+22a2+…+2n﹣1an﹣1=(n﹣1)×2n+1﹣2n+2②,由①﹣②得當(dāng)n≥2時(shí),2nan=(n+1)×2n+1﹣2n,∴當(dāng)n≥2時(shí),an=2(n+1)﹣1=2n+1,當(dāng)n=1時(shí),a1=3,∴{an}的通項(xiàng)公式為an=2n+1;(2)證明:由(1)得an=2n+1,bn=,則bn==﹣,∴b1+b2+…+bn=(﹣)+﹣﹣)+...+(﹣)=﹣,令cn=22n+3(2n+3)(2n+5),則cn+1﹣cn=22n+5(2n+5)(2n+7)﹣22n+3(2n+3)(2n+5)=22n+3(2n+5)(8n+28﹣2n﹣3)=22n+3(2n+3)(6n+25)>0,∴數(shù)列{cn}是遞增數(shù)列,數(shù)列{}是遞減數(shù)列,∴﹣的最小值為﹣=,∴≤﹣<,故≤b1+b2+…+bn<.36.(2022秋?秦皇島月考)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,當(dāng)n?2時(shí),2(n﹣1)Sn=2nSn﹣1+n2﹣n.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求證:.【答案】(1)數(shù)列{an}的通項(xiàng)公式an=n+1;(2)證明見解析.【解答】解:(1)∵當(dāng)n?2時(shí),,則2(n2﹣n)≠0,∴,當(dāng)n=1時(shí),S1=a1=2,∴,∴數(shù)列是首項(xiàng)為2,公差為的等差數(shù)列,∴,∴,當(dāng)n?2時(shí),,當(dāng)n=1時(shí),a1=1+1=2,∴數(shù)列{an}的通項(xiàng)公式an=n+1;(2)證明:由(1)得數(shù)列{an}的通項(xiàng)公式an=n+1,∵(n+1)2﹣n(n+2)=1>0,∴,當(dāng)n=1時(shí),,當(dāng)n?2時(shí),,綜上所述,.37.(2022秋?湖北期中)已知數(shù)列{an}的首項(xiàng)為4,且滿足,若.(1)求數(shù)列{bn}的通項(xiàng)公式;(2)數(shù)列{cn}中,c1=4,對(duì)任意m,n∈N*,都有,求數(shù)列{bn?cn}的前n項(xiàng)和Sn.【答案】(1).(2).【解答】解:(1)∵,∴,∴,又,∴bn+1=2bn且b1=1≠0,∴{bn}是首項(xiàng)為1,公比為2的等比數(shù)列,∴.(2)∵對(duì)任意m,n∈N*,都有,∴令m=1得,∴cn=3n+1,∴,∴,∴,作差得﹣Sn=4+3(2+22+…+2n﹣1)﹣(3n+1)?2n=1+3×﹣(3n+1)?2n,∴.38.(2022秋?煙臺(tái)期中)記Sn為數(shù)列{an}的前n項(xiàng)和,已知a1=1,Sn=n2an.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=,求證:Tn<.【答案】(1);(2)證明過(guò)程見解析.【解答】解:(1)數(shù)列{an}中,已知a1=1,Sn=n2an,①,當(dāng)n≥2時(shí),,②,①﹣②得:,整理得,所以,.....,;所有的式子相乘得到:,故.證明:(2)由(1)得:=,所以,所以:=.39.(2022秋?湖北期中)已知等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=2,b2=4,an=2log2bn,n∈N*.(1)求數(shù)列{an},{bn}的通項(xiàng)公式;(2)設(shè)數(shù)列{an}中不在數(shù)列{bn}中的項(xiàng)按從小到大的順序構(gòu)成數(shù)列{cn},記數(shù)列{cn}的前n項(xiàng)和為Sn,求S50.【答案】(1)an=2n,n∈N*,bn=2n,n∈N*;(2)S50=3066.【解答】解:(1)由題意,設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,∵a1=2,b2=4,an=2log2bn,∴a2=2log2b2=2log24=4,a1=2log2b1=2,即log2b1=1,解得b1=2,∴公差d=a2﹣a1=4﹣2=2,公比q===2,∴an=2+2(n﹣1)=2n,n∈N*,bn=2?2n﹣1=2n,n∈N*.(2)由(1),可得,故bn是數(shù)列{an}中的第2n﹣1項(xiàng),設(shè)數(shù)列{an}的前n項(xiàng)和為Pn,數(shù)列的前n項(xiàng)和為Qn,∵b6==a32,b7==a64,∴數(shù)列{cn}的前50項(xiàng)是由數(shù)列{an}的前56項(xiàng)去掉數(shù)列{bn}的前6項(xiàng)后構(gòu)成的,故.40.(2022秋?湖南月考)記各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和是Sn,已知an2+an=2Sn,n為正整數(shù).(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=tan(an)?tan(an+1),求數(shù)列{bn}的前n項(xiàng)和Tn.【答案】見試題解答內(nèi)容【解答】解:(1)各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和是Sn,已知:an2+an=2Sn,①,當(dāng)n=1時(shí),解得a1=1;當(dāng)n≥2時(shí),,②,①﹣②得:an﹣an﹣1=1(常數(shù)),故數(shù)列{an}是以1為首項(xiàng),1為公差的等差數(shù)列;所以an=n.(2)由(1)得:tan1=,所以tan(n+1)tann=;故Tn=b1+b2+...+bn=,故.41.(2022秋?濰坊月考)在各項(xiàng)均不相等的等差數(shù)列{an}中,a1=1,且a1,a2,a5成等比數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn=2n+1﹣2.(1)求數(shù)列{an},{bn}的通項(xiàng)公式;(2)設(shè),數(shù)列{cn}的前n項(xiàng)和Tn,若不等式2Tn+n2>3loga(1﹣a)對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.【答案】(1)an=2n﹣1,bn=2n.(2)(0,).【解答】解:(1)設(shè)等差數(shù)列{an}的公差為d≠0,∵a1=1,且a1,a2,a5成等比數(shù)列,∴=a1a5,即(1+d)2=1×(1+4d),解得d=2,d=0(舍去).∴an=1+2(n﹣1)=2n﹣1.∵數(shù)列{bn}的前n項(xiàng)和Sn=2n+1﹣2,∴n≥2時(shí),bn=Sn﹣Sn﹣1=2n+1﹣2﹣(2n﹣2)=2n,n=1時(shí),b1=22﹣2=2,對(duì)于上式也成立,∴bn=2n.(2)=22n﹣1﹣=22n﹣1﹣n,∴數(shù)列{cn}的前n項(xiàng)和Tn=﹣=﹣,2Tn+n2=﹣n,由﹣(n+1)﹣[﹣n]=4n+1﹣1>0,∴數(shù)列{2Tn+n2}單調(diào)遞增,其最小值為2T1+1=﹣1=3,∵不等式2Tn+n2>3loga(1﹣a)對(duì)任意的正整數(shù)n恒成立,∴3>3loga(1﹣a)恒成立,即loga(1﹣a)<1=logaa,a>1時(shí)不成立,0<a<1時(shí),1﹣a>a,解得0<a<,∴實(shí)數(shù)a的取值范圍是(0,).42.(2022秋?玄武區(qū)校級(jí)月考)設(shè)數(shù)列{an}滿足a1=2,a2=6,且an+2=2an+1﹣an+2.(1)求證:數(shù)列{an+1﹣an}為等差數(shù)列,并求{an}的通項(xiàng)公式;(2)設(shè)bn=ancosnπ,求數(shù)列{bn}的前n項(xiàng)和Tn.【答案】(1)證明見解答;;(2).【解答】解:(1)證明:∵an+2=2an+1﹣an+2,∴(an+2﹣an+1)﹣(an+1﹣an)=2,又a2﹣a1=4,∴數(shù)列{an+1﹣an}是以4為首項(xiàng),2為公差的等差數(shù)列,∴an+1﹣an=4+(n﹣1)×2=2n+2,∴a2﹣a1=4,a3﹣a2=6,???,an﹣an﹣1=2n,累加可得:,又a1=2,∴;(2),∴當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),Tn=﹣1×2+2×3﹣3×4+4×5﹣?+(n﹣1)n﹣n(n+1)=,∴.43.(2022秋?鞍山期中)已知數(shù)列{an}的前n項(xiàng)和Sn=3n﹣1,數(shù)列{bn}滿足b1=﹣1,bn+1=bn+(2n﹣1).(1)求數(shù)列{an}、{bn}的通項(xiàng)公式.(2)若,求數(shù)列{cn}的前n項(xiàng)和Tn.【答案】(1)an=;bn=n2﹣2n;(2)Tn=n2﹣n+1.【解答】解:(1)在Sn=3n﹣1中,令n=1,則a1=2,當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=(3n﹣1)﹣3(n﹣1)+1=3,所以an=;由bn+1=bn+(2n﹣1),知bn+1﹣bn=2n﹣1,所以bn=(bn﹣bn﹣1)+(bn﹣1﹣bn﹣2)+…+(b2﹣b1)+b1=(2n﹣3)+(2n﹣5)+…+1+(﹣1)=﹣1=n2﹣2n.(2)因?yàn)椋訲n=+++…+=++3×(++…+)=﹣2+0+3×[(3﹣2)+(4﹣2)+…+(n﹣2)]=﹣2+3×=n2﹣n+1.44.(2022秋?濰坊月考)已知數(shù)列{an}中,a1=2,當(dāng)n≥2時(shí),(n﹣1)an=2nan﹣1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)cn=,數(shù)列{cn}中是否存在最大項(xiàng)與最小項(xiàng)?若存在,求出最大項(xiàng)與最小項(xiàng);若不存在,說(shuō)明理由.【答案】(1)an=n?2n;(2)最大項(xiàng)為,最小項(xiàng)為﹣4.【解答】解:(1)因?yàn)楫?dāng)n≥2時(shí),有(n﹣1)an=2nan﹣1,所以=2,令bn=,則bn=2bn﹣1,n≥2,所以數(shù)列{bn}為等比數(shù)列,公比為2,首項(xiàng)為2,所以bn=2n,所以an=n?2n;(2)由(1)知cn==,得cn+1=,cn+1﹣cn=﹣=,當(dāng)n=10時(shí),cn+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論