版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.右邊莖葉圖記錄了甲、乙兩組各十名學(xué)生在高考前體檢中的體重(單位:).記甲組數(shù)據(jù)的眾數(shù)與中位數(shù)分別為,乙組數(shù)據(jù)的眾數(shù)與中位數(shù)分別為,則()A. B.C. D.2.在正方體中,直線與平面所成角的正弦值為()A. B. C. D.3.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移 B.向右平移C.向左平移 D.向右平移4.設(shè)x,y滿足約束條件,則z=x-y的取值范圍是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]5.向正方形ABCD內(nèi)任投一點(diǎn)P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.6.已知、是球的球面上的兩點(diǎn),,點(diǎn)為該球面上的動(dòng)點(diǎn),若三棱錐體積的最大值為,則球的表面積為()A. B. C. D.7.甲、乙、丙、丁四名運(yùn)動(dòng)員參加奧運(yùn)會(huì)射擊項(xiàng)目選拔賽,四人的平均成績和方差如下表所示,從這四個(gè)人中選擇一人參加奧運(yùn)會(huì)射擊項(xiàng)目比賽,最佳人選是()人數(shù)據(jù)甲乙丙丁平均數(shù)8.68.98.98.2方差3.53.52.15.6A.甲 B.乙 C.丙 D.丁8.在直三棱柱(側(cè)棱垂直于底面)中,若,,,則其外接球的表面積為()A. B. C. D.9.對(duì)某班學(xué)生一次英語測試的成績分析,各分?jǐn)?shù)段的分布如下圖(分?jǐn)?shù)取整數(shù)),由此,估計(jì)這次測驗(yàn)的優(yōu)秀率(不小于80分)為()A.92% B.24% C.56% D.76%10.設(shè)正項(xiàng)等比數(shù)列的前項(xiàng)和為,若,,則公比()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則______.12.設(shè)實(shí)數(shù)滿足,則的最小值為_____13.魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱.從外表上看,六根等長的正四棱柱體分成三組,經(jīng)榫卯起來,如圖3,若正四棱柱體的高為,底面正方形的邊長為,現(xiàn)將該魯班鎖放進(jìn)一個(gè)球形容器內(nèi),則該球形容器的表面積的最小值為__________.(容器壁的厚度忽略不計(jì))14.已知的三邊分別是,且面積,則角__________.15.若角的終邊過點(diǎn),則______.16.已知圓錐如圖所示,底面半徑為,母線長為,則此圓錐的外接球的表面積為___.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)已知數(shù)列的前項(xiàng)和滿足,求數(shù)列的通項(xiàng)公式;(2)數(shù)列滿足,(),求數(shù)列的通項(xiàng)公式.18.在中,、、分別是內(nèi)角、、的對(duì)邊,且.(1)求角的大?。唬?)若,的面積為,求的周長.19.已知{an}是等差數(shù)列,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通項(xiàng)公式;(2)令cn=anbn(n∈N*),求{cn}的前n項(xiàng)和Tn20.已知數(shù)列滿足,.(1)證明:是等比數(shù)列;(2)求數(shù)列的前n項(xiàng)和.21.王某2017年12月31日向銀行貸款元,銀行貸款年利率為,若此貸款分十年還清(2027年12月31日還清),每年年底等額還款(每次還款金額相同),設(shè)第年末還款后此人在銀行的欠款額為元.(1)設(shè)每年的還款額為元,請(qǐng)用表示出;(2)求每年的還款額(精確到元).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】甲組數(shù)據(jù)的眾數(shù)為x1=64,乙組數(shù)據(jù)的眾數(shù)為x2=66,則x1<x2;甲組數(shù)據(jù)的中位數(shù)為y1==65,乙組數(shù)據(jù)的中位數(shù)為y2==66.5,則y1<y2.2、C【解析】
由題,連接,設(shè)其交平面于點(diǎn)易知平面,即(或其補(bǔ)角)為與平面所成的角,再利用等體積法求得AO的長度,即可求得的長度,可得結(jié)果.【詳解】設(shè)正方體的邊長為1,如圖,連接,設(shè)其交平面于點(diǎn),則易知,,又,所以平面,即得平面.在三棱錐中,由等體積法知,,即,解得,所以.連接,則(或其補(bǔ)角)為與平面所成的角.在中,.故選C.【點(diǎn)睛】本題考查了立體幾何中線面角的求法,作出線面角是解題的關(guān)鍵,求高的長度會(huì)用到等體積法,屬于中檔題.3、B【解析】
利用的圖象變換規(guī)律,即可求解,得出結(jié)論.【詳解】由題意,函數(shù),,又由,故把函數(shù)的圖象上所有的點(diǎn),向右平移個(gè)單位長度,可得的圖象,故選:B.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換規(guī)律,其中解答中熟記三角函數(shù)的圖象變換是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、B【解析】作出約束條件表示的可行域,如圖中陰影部分所示.目標(biāo)函數(shù)即,易知直線在軸上的截距最大時(shí),目標(biāo)函數(shù)取得最小值;在軸上的截距最小時(shí),目標(biāo)函數(shù)取得最大值,即在點(diǎn)處取得最小值,為;在點(diǎn)處取得最大值,為.故的取值范圍是[–3,2].所以選B.【名師點(diǎn)睛】線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即運(yùn)用數(shù)形結(jié)合的思想解題.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大或最小值會(huì)在可行域的端點(diǎn)處或邊界上取得.5、C【解析】
由題意,求出滿足題意的點(diǎn)所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設(shè)正方形的邊長為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點(diǎn)所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點(diǎn)睛】本題考查幾何概型的概率求法,解題的關(guān)鍵是明確概率模型,屬于基礎(chǔ)題.6、A【解析】
當(dāng)點(diǎn)位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,利用三棱錐體積的最大值為,求出半徑,即可求出球的表面積.【詳解】如圖所示,當(dāng)點(diǎn)位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,設(shè)球的半徑為,此時(shí),.因此,球的表面積為.故選:A.【點(diǎn)睛】本題考查球的半徑與表面積的計(jì)算,確定點(diǎn)的位置是關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.7、C【解析】
甲,乙,丙,丁四個(gè)人中乙和丙的平均數(shù)最大且相等,甲,乙,丙,丁四個(gè)人中丙的方差最小,說明丙的成績最穩(wěn)定,得到丙是最佳人選.【詳解】甲,乙,丙,丁四個(gè)人中乙和丙的平均數(shù)最大且相等,甲,乙,丙,丁四個(gè)人中丙的方差最小,說明丙的成績最穩(wěn)定,綜合平均數(shù)和方差兩個(gè)方面說明丙成績即高又穩(wěn)定,丙是最佳人選,故選:C.【點(diǎn)睛】本題考查平均數(shù)和方差的實(shí)際應(yīng)用,考查數(shù)據(jù)處理能力,求解時(shí)注意方差越小數(shù)據(jù)越穩(wěn)定.8、A【解析】
根據(jù)題意,將直三棱柱擴(kuò)充為長方體,其體對(duì)角線為其外接球的直徑,可得半徑,即可求出外接球的表面積.【詳解】∵,,∠ABC=90°,∴將直三棱柱擴(kuò)充為長、寬、高為2、2、3的長方體,其體對(duì)角線為其外接球的直徑,長度為,∴其外接球的半徑為,表面積為=17π.故選:A.【點(diǎn)睛】本題考查幾何體外接球,通常將幾何體進(jìn)行割補(bǔ)成長方體,幾何體外接球等同于長方體外接球,利用長方體外接球直徑等于體對(duì)角線長求出半徑,再求出球的體積和表面積即可,屬于簡單題.9、C【解析】試題分析:.故C正確.考點(diǎn):頻率分布直方圖.10、D【解析】
根據(jù)題意,求得,結(jié)合,即可求解,得到答案.【詳解】由題意,正項(xiàng)等比數(shù)列滿足,,即,,所以,又由,因?yàn)?,所?故選:D.【點(diǎn)睛】本題主要考查了的等比數(shù)列的通項(xiàng)公式,以及等比數(shù)列的前n項(xiàng)和公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項(xiàng)公式,以及等比數(shù)列的前n項(xiàng)和公式,合理運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,然后利用兩角差的正切公式可計(jì)算出的值.【詳解】.故答案為:.【點(diǎn)睛】本題考查利用兩角差的正切公式求值,解題的關(guān)鍵就是弄清所求角與已知角之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.12、1.【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】解:由實(shí)數(shù)滿足作出可行域如圖,
由圖形可知:.
令,化為,
由圖可知,當(dāng)直線過點(diǎn)時(shí),直線在軸上的截距最小,有最小值為1.
故答案為:1.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.13、【解析】表面積最小的球形容器可以看成長、寬、高分別為1、2、6的長方體的外接球.設(shè)其半徑為R,,所以該球形容器的表面積的最小值為.【點(diǎn)睛】將表面積最小的球形容器,看成其中兩個(gè)正四棱柱的外接球,求其半徑,進(jìn)而求體積.14、【解析】試題分析:由,可得,整理得,即,所以.考點(diǎn):余弦定理;三角形的面積公式.15、-2【解析】
由正切函數(shù)定義計(jì)算.【詳解】根據(jù)正切函數(shù)定義:.故答案為-2.【點(diǎn)睛】本題考查三角函數(shù)的定義,掌握三角函數(shù)定義是解題基礎(chǔ).16、【解析】
根據(jù)圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,再根據(jù)勾股定理可得求的半徑.【詳解】由圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,設(shè)球心為,球的半徑為,則,圓,因?yàn)?所以,所以,,則有.解得,則.【點(diǎn)睛】本題主要考查了幾何體的外接球,關(guān)鍵是會(huì)找到球心求出半徑,通常結(jié)合勾股定理求.屬于難題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用求出數(shù)列的通項(xiàng)公式;(2)利用累加法求數(shù)列的通項(xiàng)公式;【詳解】解:(1)①當(dāng)時(shí),即當(dāng)時(shí),②①減②得經(jīng)檢驗(yàn)時(shí),成立故(2)()……將上述式相加可得【點(diǎn)睛】本題考查作差法求數(shù)列的通項(xiàng)公式以及累加法求數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.18、(1)(2)【解析】
(1)由正弦定理,兩角和的正弦函數(shù)公式化簡已知等式可得,由,可求,結(jié)合范圍,可求.(2)利用三角形的面積公式可求,進(jìn)而根據(jù)余弦定理可得,即可計(jì)算得解的周長的值.【詳解】解:(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面積為,,∴,∴由余弦定理可得:,∴解得:,∴的周長.【點(diǎn)睛】本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.19、(2)an=n;bn=2n﹣2(2)Tn=(n﹣2)?2n+2【解析】
(2)運(yùn)用數(shù)列的遞推式,以及等比數(shù)列的通項(xiàng)公式可得bn,{an}是公差為的等差數(shù)列,運(yùn)用等差數(shù)列的通項(xiàng)公式可得首項(xiàng)和公差,可得所求通項(xiàng)公式;
(2)求得,由數(shù)列的錯(cuò)位相減法求和,結(jié)合等比數(shù)列的求和公式,即可得到所求和.【詳解】(2)2bn=b2(2+Sn),bn≠0,n=2時(shí),2b2=b2(2+S2)=b2(2+b2),解得b2=2,n≥2時(shí),2bn﹣2=2+Sn﹣2,且2bn=2+Sn,相減可得2bn﹣2bn﹣2=Sn﹣Sn﹣2=bn,即bn=2bn﹣2,可得bn=2n﹣2,設(shè){an}是公差為d的等差數(shù)列,a2b2=4,a7+b3=2即為a2+d=2,a2+6d=7,解得a2=d=2,可得an=n;(2)cn=anbn=n?2n﹣2,前n項(xiàng)和,,兩式相減可得﹣Tn=2+2+4+…+2n﹣2﹣n2nn2n,化簡可得Tn=(n﹣2)2n+2.【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的遞推式和數(shù)列的錯(cuò)位相減法求和,化簡運(yùn)算能力,屬于中檔題.20、(1)見解析;(2).【解析】
(1)由題設(shè),化簡得,即可證得數(shù)列為等比數(shù)列.(2)由(1),根據(jù)等比數(shù)列的通項(xiàng)公式,求得,利用等比數(shù)列的前n項(xiàng)和公式,即可求得數(shù)列的前n項(xiàng)和.【詳解】(1)由題意,數(shù)列滿足,所以又因?yàn)?,所以,即,所以是?為首項(xiàng),2為公比的等比數(shù)列.(2)由(1),根據(jù)等比數(shù)列的通項(xiàng)公式,可得,即,所以,即.【點(diǎn)睛】本題主要考查了等比數(shù)列的定義,以及等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式的應(yīng)用,其中解答中熟記等比數(shù)列的定義,以及等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和的公式,準(zhǔn)確
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度集裝箱貨運(yùn)跟蹤合同:實(shí)時(shí)監(jiān)控貨物運(yùn)輸狀態(tài)2篇
- 2024支付業(yè)務(wù)合規(guī)性審核與咨詢服務(wù)合同2篇帶眉腳
- 二零二五年度高級(jí)黃金抵押貸款擔(dān)保服務(wù)合同3篇
- 2024車輛使用期間責(zé)任與安全條款合同版B版
- 采茶的課程設(shè)計(jì)
- 財(cái)務(wù)管理的在線課程設(shè)計(jì)
- 二手房產(chǎn)過戶2024年手續(xù)合同
- 鋼結(jié)構(gòu)課程設(shè)計(jì)pkpm教程
- 2025年度房地產(chǎn)項(xiàng)目可行性研究與風(fēng)險(xiǎn)評(píng)估合同3篇
- 2025年度房屋買賣合同房地產(chǎn)項(xiàng)目合作開發(fā)合同3篇
- 組織知識(shí)清單
- 《中華人民共和國職業(yè)分類大典》電子版
- 2022年《山丹丹開花紅艷艷教案》初中音樂蘇少課標(biāo)版八年級(jí)下冊教案
- 教程adams壓縮包群文件msc event files
- 肺功能檢查指南
- 海商法術(shù)語中英對(duì)照
- 自動(dòng)酸洗生產(chǎn)線設(shè)計(jì)方案
- 地下水水資源論證報(bào)告書
- 【家庭自制】 南北香腸配方及28種制作方法
- 電梯調(diào)度問題模型(共3頁)
- 廠房施工總結(jié)報(bào)告
評(píng)論
0/150
提交評(píng)論