2022-2023學(xué)年廣西玉林市陸川縣高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第1頁
2022-2023學(xué)年廣西玉林市陸川縣高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第2頁
2022-2023學(xué)年廣西玉林市陸川縣高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第3頁
2022-2023學(xué)年廣西玉林市陸川縣高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第4頁
2022-2023學(xué)年廣西玉林市陸川縣高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖所示,在正四棱錐中,分別是,,的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列結(jié)論不恒成立的是().A.與異面 B.面 C. D.2.已知,集合,則A. B. C. D.3.某四棱錐的三視圖如圖所示,則它的最長(zhǎng)側(cè)棱的長(zhǎng)為()A. B. C. D.44.已知直線l1:ax+2y+8=0與l2:x+(a-1)y+a2-1=0平行,則實(shí)數(shù)a的取值是()A.-1或2 B.-1 C.0或1 D.25.在中,點(diǎn)滿足,則()A. B.C. D.6.在中,內(nèi)角,,的對(duì)邊分別為,,,若,且,則的形狀為()A.等邊三角形 B.等腰直角三角形C.最大角為銳角的等腰三角形 D.最大角為鈍角的等腰三角形7.在中,是邊上一點(diǎn),,且,則的值為()A. B. C. D.8.?dāng)?shù)列{an}滿足a1=1,an+1=2an+1(n∈N+),那么a4的值為().A.4 B.8 C.15 D.319.已知平面向量,,,,且,則向量與向量的夾角為()A. B. C. D.10.某學(xué)校為了解1000名新生的身體素質(zhì),將這些學(xué)生編號(hào)為1,2,…,1000,從這些新生中用系統(tǒng)抽樣方法等距抽取100名學(xué)生進(jìn)行體質(zhì)測(cè)驗(yàn),若46號(hào)學(xué)生被抽到,則下面4名學(xué)生中被抽到的是A.8號(hào)學(xué)生 B.200號(hào)學(xué)生 C.616號(hào)學(xué)生 D.815號(hào)學(xué)生二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)圖象各點(diǎn)的橫坐標(biāo)縮短為原來的一半,再向左平移個(gè)單位,得到的函數(shù)圖象離原點(diǎn)最近的的對(duì)稱中心是______.12._________________.13.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中點(diǎn),則點(diǎn)C到平面的距離等于________.14.函數(shù)的單調(diào)增區(qū)間是_________15.已知正實(shí)數(shù)滿足,則的值為_____________.16.已知,,若,則實(shí)數(shù)的值為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知都是第二象限的角,求的值。18.已知三角形的三個(gè)頂點(diǎn).(1)求BC邊所在直線的方程;(2)求BC邊上的高所在直線方程.19.已知函數(shù)在一個(gè)周期內(nèi)的圖像經(jīng)過點(diǎn)和點(diǎn),且的圖像有一條對(duì)稱軸為.(1)求的解析式及最小正周期;(2)求的單調(diào)遞增區(qū)間.20.已知點(diǎn),,動(dòng)點(diǎn)滿足,記M的軌跡為曲線C.(1)求曲線C的方程;(2)過坐標(biāo)原點(diǎn)O的直線l交C于P、Q兩點(diǎn),點(diǎn)P在第一象限,軸,垂足為H.連結(jié)QH并延長(zhǎng)交C于點(diǎn)R.(i)設(shè)O到直線QH的距離為d.求d的取值范圍;(ii)求面積的最大值及此時(shí)直線l的方程.21.已知數(shù)列的前項(xiàng)和為,滿足且,數(shù)列的前項(xiàng)為,滿足(Ⅰ)設(shè),求證:數(shù)列為等比數(shù)列;(Ⅱ)求的通項(xiàng)公式;(Ⅲ)若對(duì)任意的恒成立,求實(shí)數(shù)的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】如圖所示,連接AC、BD相交于點(diǎn)O,連接EM,EN.(1)由正四棱錐S?ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分別是BC,CD,SC的中點(diǎn),∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正確.(2)由異面直線的定義可知:EP與SD是異面直線,故A正確;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正確.(4)當(dāng)P與M重合時(shí),有∥,其他情況都是異面直線即D不正確.故選D點(diǎn)睛:本題抓住正四棱錐的特征,頂點(diǎn)在底面的投影為底面正方形的中心,即SO⊥底面ABCD,EP為動(dòng)直線,所以要證EP∥面,可先證EP所在的平面平行于面SBD,要證⊥可先證AC垂直于EP所在的平面,所以化動(dòng)為靜的處理思想在立體中常用.2、D【解析】

先求出集合A,由此能求出?UA.【詳解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴?UA={x|x}.故選:D.【點(diǎn)睛】本題考查補(bǔ)集的求法,考查補(bǔ)集定義、不等式性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.3、C【解析】

由三視圖可知:底面,,底面是一個(gè)直角梯形,,,均為直角三角形,判斷最長(zhǎng)的棱,通過幾何體求解即可.【詳解】由三視圖可知:該幾何體如圖所示,則底面,,底面是一個(gè)直角梯形,其中,,,,可得,,均為直角三角形,最長(zhǎng)的棱是,.故選:C.【點(diǎn)睛】本題考查了三視圖,線面垂直的判定與性質(zhì)定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.4、A【解析】

【詳解】,選A.【點(diǎn)睛】本題考查由兩直線平行求參數(shù).5、D【解析】

因?yàn)?,所以,即;故選D.6、D【解析】

先由余弦定理,結(jié)合題中條件,求出,再由,求出,進(jìn)而可得出三角形的形狀.【詳解】因?yàn)?,所以,,所?又,所以,則的形狀為最大角為鈍角的等腰三角形.故選D【點(diǎn)睛】本題主要考查三角形的形狀的判定,熟記余弦定理即可,屬于常考題型.7、D【解析】

根據(jù),用基向量表示,然后與題目條件對(duì)照,即可求出.【詳解】由在中,是邊上一點(diǎn),,則,即,故選.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用及向量的線性運(yùn)算.8、C【解析】試題分析:,,,故選C.考點(diǎn):數(shù)列的遞推公式9、B【解析】

根據(jù)可得到:,由此求得;利用向量夾角的求解方法可求得結(jié)果.【詳解】由題意知:,則設(shè)向量與向量的夾角為則本題正確選項(xiàng):【點(diǎn)睛】本題考查向量夾角的求解,關(guān)鍵是能夠通過平方運(yùn)算將模長(zhǎng)轉(zhuǎn)變?yōu)橄蛄康臄?shù)量積,從而得到向量的位置關(guān)系.10、C【解析】

等差數(shù)列的性質(zhì).滲透了數(shù)據(jù)分析素養(yǎng).使用統(tǒng)計(jì)思想,逐個(gè)選項(xiàng)判斷得出答案.【詳解】詳解:由已知將1000名學(xué)生分成100個(gè)組,每組10名學(xué)生,用系統(tǒng)抽樣,46號(hào)學(xué)生被抽到,所以第一組抽到6號(hào),且每組抽到的學(xué)生號(hào)構(gòu)成等差數(shù)列,公差,所以,若,則,不合題意;若,則,不合題意;若,則,符合題意;若,則,不合題意.故選C.【點(diǎn)睛】本題主要考查系統(tǒng)抽樣.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由二倍角公式化簡(jiǎn)函數(shù)式,然后由三角函數(shù)圖象變換得新解析式,結(jié)合正弦函數(shù)性質(zhì)得對(duì)稱中心.【詳解】由題意,經(jīng)過圖象變換后新函數(shù)解析式為,由,,,絕對(duì)值最小的是,因此所求對(duì)稱中心為.故答案為:.【點(diǎn)睛】本題考查三角函數(shù)的圖象變換,考查正弦函數(shù)的性質(zhì),考查二倍角公式,掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.12、3【解析】

分式上下為的二次多項(xiàng)式,故上下同除以進(jìn)行分析.【詳解】由題,,又,故.

故答案為:3.【點(diǎn)睛】本題考查了分式型多項(xiàng)式的極限問題,注意:當(dāng)時(shí),13、【解析】

利用等體法即可求解.【詳解】如圖,由ABCD是菱形,,,E是BC的中點(diǎn),所以,又平面ABCD,所以平面ABCD,即,又,則平面,由平面,所以,所以,設(shè)點(diǎn)C到平面的距離為,由即,即,所以.故答案為:【點(diǎn)睛】本題考查了等體法求點(diǎn)到面的距離,同時(shí)考查了線面垂直的判定定理,屬于基礎(chǔ)題.14、,【解析】

令,即可求得結(jié)果.【詳解】令,解得:,所以單調(diào)遞增區(qū)間是,故填:,【點(diǎn)睛】本題考查了型如:?jiǎn)握{(diào)區(qū)間的求法,屬于基礎(chǔ)題型.15、【解析】

將已知等式,兩邊同取以為底的對(duì)數(shù),求出,利用換底公式,即可求解.【詳解】,,,.故答案為:.【點(diǎn)睛】本題考查指對(duì)數(shù)之間的關(guān)系,考查對(duì)數(shù)的運(yùn)算以及應(yīng)用換底公式求值,屬于中檔題.16、【解析】

利用共線向量等價(jià)條件列等式求出實(shí)數(shù)的值.【詳解】,,且,,因此,,故答案為.【點(diǎn)睛】本題考查利用共線向量來求參數(shù),解題時(shí)要充分利用共線向量坐標(biāo)表示列等式求解,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、;【解析】

根據(jù)所處象限可確定的符號(hào),利用同角三角函數(shù)關(guān)系可求得的值;代入兩角和差正弦和余弦公式可求得結(jié)果.【詳解】都是第二象限的角,,【點(diǎn)睛】本題考查利用兩角和差正弦和余弦公式求值的問題;關(guān)鍵是能夠根據(jù)角所處的范圍和同角三角函數(shù)關(guān)系求得三角函數(shù)值.18、(1)(2)【解析】

(1)由已知條件結(jié)合直線的兩點(diǎn)式方程的求法求解即可;(2)先求出直線BC的斜率,再求出BC邊上的高所在直線的斜率,然后利用直線的點(diǎn)斜式方程的求法求解即可.【詳解】解:(1),,直線BC的方程為,即.(2),直線BC邊上的高所在的直線的斜率為,又,直線BC邊上的高的方程為:,即BC邊上的高所在直線方程為.【點(diǎn)睛】本題考查了直線的兩點(diǎn)式方程的求法,重點(diǎn)考查了直線的位置關(guān)系及直線的點(diǎn)斜式方程的求法,屬基礎(chǔ)題.19、(1),;(2).【解析】

(1)由函數(shù)的圖象經(jīng)過點(diǎn)且f(x)的圖象有一條對(duì)稱軸為直線,可得最大值A(chǔ),且能得周期并求得ω,由五點(diǎn)法作圖求出的值,可得函數(shù)的解析式.(2)利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)遞增區(qū)間.【詳解】(1)函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,)在一個(gè)周期內(nèi)的圖象經(jīng)過點(diǎn),,且f(x)的圖象有一條對(duì)稱軸為直線,故最大值A(chǔ)=4,且,∴,∴ω=1.所以.因?yàn)榈膱D象經(jīng)過點(diǎn),所以,所以,.因?yàn)?,所以,所?(2)因?yàn)?,所以,,所以,,即的單調(diào)遞增區(qū)間為.【點(diǎn)睛】本題主要考查由函數(shù)y=Asin(ωx+)的性質(zhì)求解析式,通常由函數(shù)的最大值求出A,由周期求出ω,由五點(diǎn)法作圖求出的值,考查了正弦型函數(shù)的單調(diào)性問題,屬于基礎(chǔ)題.20、(1);(2)(i)(ii)面積最大值為,直線的方程為.【解析】

(1)根據(jù)題意列出方程求解即可(2)聯(lián)立直線與圓的方程,得出P、Q、H三點(diǎn)坐標(biāo),表示出QH直線方程,采用點(diǎn)到直線距離公式求解;利用圓的幾何關(guān)系,表示出三角形的底和高,再結(jié)合函數(shù)最值問題進(jìn)行求解【詳解】(1)由及兩點(diǎn)距離公式,有,化簡(jiǎn)整理得,.所以曲線C的方程為;(2)(i)設(shè)直線l的方程為;將直線l的方程與圓C的方程聯(lián)立,消去y,得(,解得因此,,,所以直線QH的方程為.到直線QH的距離,當(dāng)時(shí).,所以,(ii)過O作于D,則D為QR中點(diǎn),且由(i)知,,,又由,故的面積,由,有,所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,且此時(shí)由(i)有,即.綜上,的面積最大值為的面積最大值為,且當(dāng)面積最大時(shí)直線的方程為.【點(diǎn)睛】直線與圓的綜合類題型常采用點(diǎn)到直線距離公式、圓內(nèi)構(gòu)造的直角三角形,將代數(shù)問題與幾何問題進(jìn)行有效結(jié)合,可大大降低解題難度.21、(Ⅰ)見解析(Ⅱ)(Ⅲ)【解析】

(Ⅰ)對(duì)遞推公式變形可得,根據(jù)等比數(shù)列的定義,即可得證;(Ⅱ)化簡(jiǎn)可得,然后再利用裂項(xiàng)相消法求和,即可得到結(jié)果;(Ⅲ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論