2022-2023學(xué)年河北省安平中學(xué)數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2022-2023學(xué)年河北省安平中學(xué)數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2022-2023學(xué)年河北省安平中學(xué)數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2022-2023學(xué)年河北省安平中學(xué)數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2022-2023學(xué)年河北省安平中學(xué)數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度2.的周期為()A. B. C. D.3.已知,,,則實數(shù)、、的大小關(guān)系是()A. B.C. D.4.采用系統(tǒng)抽樣方法從人中抽取32人做問卷調(diào)查,為此將他們隨機編號為,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為.抽到的人中,編號落入?yún)^(qū)間的人做問卷,編號落入?yún)^(qū)間的人做問卷,其余的人做問卷.則抽到的人中,做問卷的人數(shù)為()A. B. C. D.5.在中,,,則()A. B. C. D.6.一個長方體共一頂點的三條棱長分別是,這個長方體它的八個頂點都在同一個球面上,這個球的表面積是()A.12π B.18π C.36π D.6π7.下圖為某市國慶節(jié)7天假期的樓房認購量與成交量的折線圖,小明同學(xué)根據(jù)折線圖對這7天的認購量(單位:套)與成交量(單位:套)作出如下判斷:①日成交量的中位數(shù)是26;②日成交量超過日平均成交量的有2天;③認購量與日期正相關(guān);④10月2日到10月6日認購量的分散程度比成交量的分散程度更大.則上述判斷錯誤的個數(shù)為()A.4 B.3 C.2 D.18.下列結(jié)論不正確的是()A.若,,則 B.若,,則C.若,則 D.若,則9.若兩個正實數(shù),滿足,且不等式有解,則實數(shù)的取值范圍是()A. B. C. D.10.從裝有紅球和綠球的口袋內(nèi)任取2個球(其中紅球和綠球都多于2個),那么互斥而不對立的兩個事件是()A.至少有一個紅球,至少有一個綠球B.恰有一個紅球,恰有兩個綠球C.至少有一個紅球,都是紅球D.至少有一個紅球,都是綠球二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)數(shù)列滿足,,,,______.12.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_____.13.程序:的最后輸出值為___________________.14.△ABC中,,,則=_____.15.函數(shù)的初相是__________.16.函數(shù)的零點的個數(shù)是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知不等式ax2-3x+6>4的解集為{x|x<1(1)求a,b;(2)解關(guān)于x的不等式a18.設(shè)a為實數(shù),函數(shù),(1)若,求不等式的解集;(2)是否存在實數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由;(3)寫出函數(shù)在R上的零點個數(shù)(不必寫出過程).19.如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個出入口設(shè)置在點及點處,且小區(qū)里有一條平行于的小路.(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(精確到米)(2)若該扇形的半徑為,已知某老人散步,從沿走到,再從沿走到,試確定的位置,使老人散步路線最長.20.已知圓M的圓心在直線上,直線與圓M相切于點.(1)求圓M的標(biāo)準(zhǔn)方程;(2)已知過點且斜率為的直線l與圓M交于不同的兩點A、B,而且滿足,求直線l的方程.21.已知向量,,.(1)求函數(shù)的解析式及在區(qū)間上的值域;(2)求滿足不等式的x的集合.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

先將轉(zhuǎn)化為,再判斷的符號即可得出結(jié)論.【詳解】解:因為,所以只需把向右平移個單位.故選:A【點睛】函數(shù)左右平移變換時,一是要注意平移方向:按“左加右減",如由的圖象變?yōu)榈膱D象,是由變?yōu)?所以是向左平移個單位;二是要注意前面的系數(shù)是不是,如果不是,左右平移時,要先提系數(shù),再來計算.2、D【解析】

根據(jù)正弦型函數(shù)最小正周期的結(jié)論即可得到結(jié)果.【詳解】函數(shù)的最小正周期故選:【點睛】本題考查正弦型函數(shù)周期的求解問題,關(guān)鍵是明確正弦型函數(shù)的最小正周期.3、B【解析】

將bc化簡為最簡形式,再利用單調(diào)性比較大小?!驹斀狻恳驗樵趩握{(diào)遞增所以【點睛】本題考查利用的單調(diào)性判斷大小,屬于基礎(chǔ)題。4、C【解析】從960人中用系統(tǒng)抽樣方法抽取32人,則抽樣距為k=,因為第一組號碼為9,則第二組號碼為9+1×30=39,…,第n組號碼為9+(n-1)×30=30n-21,由451≤30n-21≤750,得,所以n=16,17,…,25,共有25-16+1=10(人).考點:系統(tǒng)抽樣.5、A【解析】

本題首先可根據(jù)計算出的值,然后根據(jù)正弦定理以及即可計算出的值,最后得出結(jié)果?!驹斀狻恳驗椋?由正弦定理可知,即,解得,故選A?!军c睛】本題考查根據(jù)解三角形的相關(guān)公式計算的值,考查同角三角函數(shù)的相關(guān)公式,考查正弦定理的使用,是簡單題。6、A【解析】

先求長方體的對角線的長度,就是球的直徑,然后求出它的表面積.【詳解】長方體的體對角線的長是,所以球的半徑是:,所以該球的表面積是,故選A.【點睛】該題考查的是有關(guān)長方體的外接球的表面積問題,在解題的過程中,首先要明確長方體的外接球的球心應(yīng)在長方體的中心處,即長方體的體對角線是其外接球的直徑,從而求得結(jié)果.7、B【解析】

將國慶七天認購量和成交量從小到大排列,即可判斷①;計算成交量的平均值,可由成交量數(shù)據(jù)判斷②;由圖可判斷③;計算認購量的平均值與方差,成交量的平均值與方差,對方差比較即可判斷④.【詳解】國慶七天認購量從小到大依次為:91,100,105,107,112,223,276成交量從小到大依次為:8,13,16,26,32,38,166對于①,成交量的中為數(shù)為26,所以①正確;對于②,成交量的平均值為,有1天成交量超過平均值,所以②錯誤;對于③,由圖可知認購量與日期沒有正相關(guān)性,所以③錯誤;對于④,10月2日到10月6日認購量的平均值為方差為10月2日到10月6日成交量的平均值為方差為所以由方差性質(zhì)可知,10月2日到10月6日認購量的分散程度比成交量的分散程度更小,所以④錯誤;綜上可知,錯誤的為②③④故選:B【點睛】本題考查了統(tǒng)計的基本內(nèi)容,由圖示分析計算各個量,利用方差比較數(shù)據(jù)集中程度,屬于基礎(chǔ)題.8、B【解析】

根據(jù)不等式的性質(zhì),對選項逐一分析,由此得出正確選項.【詳解】對于A選項,不等式兩邊乘以一個正數(shù),不等號不改變方程,故A正確.對于B選項,若,則,故B選項錯誤.對于C、D選項,不等式兩邊同時加上或者減去同一個數(shù),不等號方向不改變,故C、D正確.綜上所述,本小題選B.【點睛】本小題主要考查不等式的性質(zhì),考查特殊值法解選擇題,屬于基礎(chǔ)題.9、D【解析】

利用基本不等式求得的最小值,根據(jù)不等式存在性問題,解一元二次不等式求得的取值范圍.【詳解】由于,而不等式有解,所以,即,解得或.故選:D【點睛】本小題主要考查利用基本不等式求最小值,考查不等式存在性問題的求解,考查一元二次不等式的解法,屬于中檔題.10、B【解析】由于從口袋中任取2個球有三個事件,恰有一個紅球,恰有兩個綠球,一紅球和一綠球.所以恰有一個紅球,恰有兩個綠球是互斥而不對立的兩個事件.因而應(yīng)選B.二、填空題:本大題共6小題,每小題5分,共30分。11、8073【解析】

對分奇偶討論求解即可【詳解】當(dāng)為偶數(shù)時,當(dāng)為奇數(shù)時,故當(dāng)為奇數(shù)時,故故答案為8073【點睛】本題考查數(shù)列遞推關(guān)系,考查分析推理能力,對分奇偶討論發(fā)現(xiàn)規(guī)律是解決本題的關(guān)鍵,是難題12、【解析】

由已知求得母線長,代入圓錐側(cè)面積公式求解.【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側(cè)面積S=πrl=2π.故答案為:2π.【點睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.13、4;【解析】

根據(jù)賦值語句的作用是將表達式所代表的值賦給變量,然后語句的順序可求出的值.【詳解】解:執(zhí)行程序語句:

=1后,=1;

=+1后,=2;

=+2后,=4;

后,輸出值為4;

故答案為:4【點睛】本題主要考查了賦值語句的作用,解題的關(guān)鍵對賦值語句的理解,屬于基礎(chǔ)題.14、【解析】試題分析:三角形中,,由,得又,所以有正弦定理得即即A為銳角,由得,因此考點:正余弦定理15、【解析】

根據(jù)函數(shù)的解析式即可求出函數(shù)的初相.【詳解】,初相為.故答案為:【點睛】本題主要考查的物理意義,屬于簡單題.16、【解析】

在同一直角坐標(biāo)系內(nèi)畫出函數(shù)與函數(shù)的圖象,利用數(shù)形結(jié)合思想可得出結(jié)論.【詳解】在同一直角坐標(biāo)系內(nèi)畫出函數(shù)與函數(shù)的圖象如下圖所示:由圖象可知,函數(shù)與函數(shù)的圖象的交點個數(shù)為,因此,函數(shù)的零點個數(shù)為.故答案為:.【點睛】本題考查函數(shù)零點個數(shù)的判斷,在判斷函數(shù)的零點個數(shù)時,一般轉(zhuǎn)化為對應(yīng)方程的根,或轉(zhuǎn)化為兩個函數(shù)圖象的交點個數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a=1,b=2;(2)①當(dāng)c>2時,解集為{x|2<x<c};②當(dāng)c<2時,解集為{x|c<x<2};③當(dāng)c=2時,解集為?.【解析】

(1)根據(jù)不等式ax2﹣3x+6>4的解集,利用根與系數(shù)的關(guān)系,求得a、b的值;(2)把不等式ax2﹣(ac+b)x+bc<0化為x2﹣(2+c)x+2c<0,討論c的取值,求出對應(yīng)不等式的解集.【詳解】(1)因為不等式ax2﹣3x+6>4的解集為{x|x<1,或x>b},所以1和b是方程ax2﹣3x+2=0的兩個實數(shù)根,且b>1;由根與系數(shù)的關(guān)系,得1+b=3解得a=1,b=2;(2)所求不等式ax2﹣(ac+b)x+bc<0化為x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0;①當(dāng)c>2時,不等式(x﹣2)(x﹣c)<0的解集為{x|2<x<c};②當(dāng)c<2時,不等式(x﹣2)(x﹣c)<0的解集為{x|c<x<2};③當(dāng)c=2時,不等式(x﹣2)(x﹣c)<0的解集為?.【點睛】本題考查了不等式的解法與應(yīng)用問題,也考查了不等式與方程的關(guān)系,考查了分類討論思想,是中檔題.18、(1)(2)不存在這樣的實數(shù),理由見解析(3)見解析【解析】

(1)代入的值,通過討論的范圍,求出不等式的解集即可;(2)通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,再求出函數(shù)的最值,得到關(guān)于的不等式組,解出并判斷即可;(3)通過討論的范圍,判斷函數(shù)的零點個數(shù)即可【詳解】(1)當(dāng)時,,則當(dāng)時,,解得或,故;當(dāng)時,,解集為,綜上,的解集為(2),顯然,,①當(dāng)時,則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因為函數(shù)在上既有最大值又有最小值,所以,,則,即,解得,故不存在這樣的實數(shù);②當(dāng)時,則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因為函數(shù)在上既有最大值又有最小值,故,,則,即,解得,故不存在這樣的實數(shù);③當(dāng)時,則為上的遞增函數(shù),故函數(shù)在上不存在最大值和最小值,綜上,不存在這樣的實數(shù)(3)當(dāng)或時,函數(shù)的零點個數(shù)為1;當(dāng)或時,函數(shù)的零點個數(shù)為2;當(dāng)時,函數(shù)的零點個數(shù)為3【點睛】本題考查分段函數(shù)的應(yīng)用,考查利用函數(shù)的單調(diào)性求最值,考查函數(shù)的零點個數(shù),著重考查分類討論思想19、(1)445米;(2)在弧的中點處【解析】

(1)假設(shè)該扇形的半徑為米,在中,利用余弦定理求解;(2)設(shè)設(shè),在中根據(jù)正弦定理,用和表示和,進而利用和差公式和輔助角公式化簡,再根據(jù)三角函數(shù)的性質(zhì)求最值.【詳解】(1)方法一:設(shè)該扇形的半徑為米,連接.由題意,得(米),(米),在中,即,解得(米)方法二:連接,作,交于,由題意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)連接,設(shè),在中,由正弦定理得:,于是,則,所以當(dāng)時,最大為,此時在弧的中點處.【點睛】本題考查正弦定理,余弦定理的實際應(yīng)用,結(jié)合了三角函數(shù)的化簡與求三角函數(shù)的最值.20、(1)(2)或【解析】

(1)設(shè)圓心坐標(biāo)為,由圓的性質(zhì)可得,再求解即可;(2)設(shè),,則等價于,再利用韋達定理求解即可.【詳解】解:(1)由圓M的圓心在直線上,設(shè)圓心坐標(biāo)為,又直線與圓M相切于點,則,解得:,即圓心坐標(biāo),半徑,即圓M的標(biāo)準(zhǔn)方程為;(2)由題意可得直線l的方程為,聯(lián)立,消整理可得,則,即,又,則恒成立,設(shè),,則由題意有,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論