2023年山西省同煤二中高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第1頁
2023年山西省同煤二中高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第2頁
2023年山西省同煤二中高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第3頁
2023年山西省同煤二中高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第4頁
2023年山西省同煤二中高一數(shù)學第二學期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.不等式的解集為,則的值為(

)A. B.C. D.2.已知分別為內(nèi)角的對邊,若,b=則=()A. B. C. D.3.甲、乙、丙、丁四名運動員參加奧運會射擊項目選拔賽,四人的平均成績和方差如下表所示,從這四個人中選擇一人參加奧運會射擊項目比賽,最佳人選是()人數(shù)據(jù)甲乙丙丁平均數(shù)8.68.98.98.2方差3.53.52.15.6A.甲 B.乙 C.丙 D.丁4.函數(shù)的零點所在的區(qū)間為()A. B. C. D.5.已知點,,若直線過原點,且、兩點到直線的距離相等,則直線的方程為()A.或 B.或C.或 D.或6.已知、是不重合的平面,a、b、c是兩兩互不重合的直線,則下列命題:①;②;③.其中正確命題的個數(shù)是()A.3 B.2 C.1 D.07.若直線的傾斜角為,則的值為()A. B. C. D.8.從集合中隨機抽取一個數(shù),從集合中隨機抽取一個數(shù),則向量與向量垂直的概率為()A. B. C. D.9.已知變量x與y負相關,且由觀測數(shù)據(jù)算得樣本平均數(shù)=1.5,=5,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是()A. B.C. D.10.已知直線x+ay+4=0與直線ax+4y-3=0互相平行,則實數(shù)a的值為()A.±2 B.2 C.-2 D.0二、填空題:本大題共6小題,每小題5分,共30分。11.若復數(shù)z滿足z?2i=z2+1(其中i12.函數(shù)f(x)=coscos的最小正周期為________.13.已知,則_________.14.在中,,,面積為,則________.15.設函數(shù)滿足,當時,,則=________.16.已知關于兩個隨機變量的一組數(shù)據(jù)如下表所示,且成線性相關,其回歸直線方程為,則當變量時,變量的預測值應該是_________.234564671013三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列是公差不為0的等差數(shù)列,成等比數(shù)列.(1)求;(2)設,數(shù)列的前n項和為,求18.已知A,B,C是的內(nèi)角,a,b,c分別是其對邊長,向量,,且.(1)求角的大??;(2)若,,求的面積.19.如圖,已知等腰梯形中,是的中點,,將沿著翻折成,使平面平面.(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)在線段上是否存在點P,使得平面,若存在,求出的值;若不存在,說明理由.20.已知函數(shù)(其中).(1)當時,求不等式的解集;(2)若關于的不等式恒成立,求的取值范圍.21.已知(1)化簡;(2)若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)一元二次不等式解集與對應一元二次方程根的關系列方程組,解得a,c的值.【詳解】由題意得為方程兩根,所以,選B.【點睛】一元二次方程的根與對應一元二次不等式解集以及對應二次函數(shù)零點的關系,是數(shù)形結合思想,等價轉(zhuǎn)化思想的具體體現(xiàn),注意轉(zhuǎn)化時的等價性.2、D【解析】

由已知利用正弦定理可求的值,根據(jù)余弦定理可得,解方程可得的值.【詳解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,負值舍去.故選.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中的應用,考查了方程思想,屬于基礎題.3、C【解析】

甲,乙,丙,丁四個人中乙和丙的平均數(shù)最大且相等,甲,乙,丙,丁四個人中丙的方差最小,說明丙的成績最穩(wěn)定,得到丙是最佳人選.【詳解】甲,乙,丙,丁四個人中乙和丙的平均數(shù)最大且相等,甲,乙,丙,丁四個人中丙的方差最小,說明丙的成績最穩(wěn)定,綜合平均數(shù)和方差兩個方面說明丙成績即高又穩(wěn)定,丙是最佳人選,故選:C.【點睛】本題考查平均數(shù)和方差的實際應用,考查數(shù)據(jù)處理能力,求解時注意方差越小數(shù)據(jù)越穩(wěn)定.4、C【解析】

分別將選項中的區(qū)間端點值代回,利用零點存在性定理判斷即可【詳解】由題函數(shù)單調(diào)遞增,,,則,故選:C【點睛】本題考查利用零點存在性定理判斷零點所在區(qū)間,屬于基礎題5、A【解析】

分為斜率存在和不存在兩種情況,根據(jù)點到直線的距離公式得到答案.【詳解】當斜率不存在時:直線過原點,驗證滿足條件.當斜率存在時:直線過原點,設直線為:即故答案選A【點睛】本題考查了點到直線的距離公式,忽略斜率不存在的情況是容易犯的錯誤.6、C【解析】

由面面垂直的判定定理,可得①正確;利用列舉所有可能,即可判斷②③錯誤.【詳解】①由面面垂直的判定定理,∵,a?β,∴α⊥β,故正確;

②,則平行,相交,異面都有可能,故不正確;

③,則與α平行,相交都有可能,故不正確.

故選:C.【點睛】本題主要考查線面關系的判斷,考查的空間想象能力,屬于基礎題.判斷線面關系問題首先要熟練掌握有關定理、推論,其次可以利用特殊位置排除錯誤結論.7、B【解析】

根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.8、B【解析】

通過向量垂直的條件即可判斷基本事件的個數(shù),從而求得概率.【詳解】基本事件總數(shù)為,當時,,滿足的基本事件有,,,共3個,故所求概率為,故選B.【點睛】本題主要考查古典概型,計算滿足條件的基本事件個數(shù)是解題的關鍵,意在考查學生的分析能力.9、A【解析】

先由變量負相關,可排除D;再由回歸直線過樣本中心,即可得出結果.【詳解】因為變量x與y負相關,所以排除D;又回歸直線過樣本中心,A選項,過點,所以A正確;B選項,不過點,所以B不正確;C選項,不過點,所以C不正確;故選A【點睛】本題主要考查線性回歸直線,熟記回歸直線的意義即可,屬于常考題型.10、A【解析】

根據(jù)兩直線平性的必要條件可得4-a【詳解】∵直線x+ay+4=0與直線ax+4y-3=0互相平行;∴4×1-a?a=0,即4-a2=0當a=2時,直線分別為x+2y+4=0和2x+4y-3=0,平行,滿足條件當a=-2時,直線分別為x-2y+4=0和-2x+4y-3=0,平行,滿足條件;所以a=±2;故答案選A【點睛】本題考查兩直線平行的性質(zhì),解題時注意平行不包括重合的情況,屬于基礎題。二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】設z=a+bi,a,b∈R,則由z?2則-2b=a2+b2+12a=012、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期為T==213、.【解析】

在分式中分子分母同時除以,將代數(shù)式轉(zhuǎn)化為正切來進行計算.【詳解】由題意得,原式,故答案為.【點睛】本題考查弦的分式齊次式的計算,常利用弦化切的思想求解,一般而言,弦化切思想主要應用于以下兩種題型:(1)弦的次分式齊次式:當分式是關于角的次分式齊次式,在分子分母中同時除以,可以將分式化為切的分式來求解;(2)弦的二次整式:當代數(shù)式是關于角弦的二次整式時,先除以,將代數(shù)式轉(zhuǎn)化為關于角弦的二次分式齊次式,然后在分式分子分母中同時除以,可實現(xiàn)弦化切.14、【解析】

由已知利用三角形面積公式可求c,進而利用余弦定理可求a的值,根據(jù)正弦定理即可計算求解.【詳解】,,面積為,解得,由余弦定理可得:,所以,故答案為:【點睛】本題主要考查了三角形面積公式,余弦定理,正弦定理在解三角形中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.15、【解析】

由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出結果.【詳解】∵函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當0≤x<π時,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案為:.【點睛】本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.16、21.2【解析】

計算出,,可知回歸方程經(jīng)過樣本中心點,從而求得,代入可得答案.【詳解】由表中數(shù)據(jù)知,,,線性回歸直線必過點,所以將,代入回歸直線方程中,得,所以當時,.【點睛】本題主要考查回歸方程的相關計算,難度很小.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)已知條件求出,再寫出等差數(shù)列的通項得解;(2)利用分組求和求.【詳解】解:(1)設數(shù)列的首項為,公差為,則.因為成等比數(shù)列,所以,化簡得又因為,所以,又因為,所以.所以.(2)根據(jù)(1)可知,【點睛】本題主要考查等差數(shù)列通項的求法,考查等差等比數(shù)列前n項和的計算和分組求和,意在考查學生對這些知識的理解掌握水平,屬于基礎題.18、(Ⅰ);(Ⅱ)【解析】

(1)先由,結合正弦定理,得到,再由,即可求出結果;(2)由余弦定理得到,進而可求出三角形的面積.【詳解】解:(1)∵∴∴∴∴∵∴;(2)在中,,由余弦定理知∴∴【點睛】本題主要考查解三角形,熟記正弦定理與余弦定理即可,屬于??碱}型.19、(Ⅰ)詳見解析;(Ⅱ)二面角的余弦值為;(Ⅲ)存在點P,使得平面,且.【解析】

試題分析:(I)根據(jù)直線與平面垂直的判定定理,需證明垂直平面內(nèi)的兩條相交直線.由題意易得四邊形是菱形,所以,從而,即,進而證得平面.(Ⅱ)由(I)可知,、、兩兩互相垂直,故可以為軸,為軸,為軸建立空間直角坐標系,利用空間向量即可求得二面角的余弦值.(Ⅲ)根據(jù)直線與平面平行的判定定理,只要能找到一點P使得PM平行平面內(nèi)的一條直線即可.由于,故可取線段中點P,中點Q,連結.則,且.由此即可得四邊形是平行四邊形,從而問題得證.試題解析:(I)由題意可知四邊形是平行四邊形,所以,故.又因為,M為AE的中點所以,即又因為,所以四邊形是平行四邊形.所以故.因為平面平面,平面平面,平面所以平面.因為平面,所以.因為,、平面,所以平面.(Ⅱ)以為軸,為軸,為軸建立空間直角坐標系,則,,,.平面的法向量為.設平面的法向量為,因為,,,令得,.所以,因為二面角為銳角,所以二面角的余弦值為.(Ⅲ)存在點P,使得平面.法一:取線段中點P,中點Q,連結.則,且.又因為四邊形是平行四邊形,所以.因為為的中點,則.所以四邊形是平行四邊形,則.又因為平面,所以平面.所以在線段上存在點,使得平面,.法二:設在線段上存在點,使得平面,設,(),,因為.所以.因為平面,所以,所以,解得,又因為平面,所以在線段上存在點,使得平面,.考點:1、空間直線與平面的位置關系;2、二面角.20、(1)或;(2).【解析】

(1)先由,將不等式化為,直接求解,即可得出結果;(2)先由題意得到恒成立,根據(jù)含絕對值不等式的性質(zhì)定理,得到,從而可求出結果.【詳解】(1)當時,求不等式,即為,所以,即或,原不等式的解集為或.(2)不等式,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論