版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Chapter6FurtherInferenceintheMultipleRegressionModel6.1JointHypothesisTesting6.2TheUseofNonsampleInformation6.3ModelSpecification6.4PoorData,Collinearity,andInsignificance6.5PredictionChapterContentsEconomistsdevelopandevaluatetheoriesabouteconomicbehaviorHypothesistestingproceduresareusedtotestthesetheoriesThetheoriesthateconomistsdevelopsometimesprovidenonsampleinformationthatcanbeusedalongwiththeinformationinasampleofdatatoestimatetheparametersofaregressionmodelAprocedurethatcombinesthesetwotypesofinformationiscalledrestrictedleastsquares6.1JointHypothesisTestingAnullhypothesiswithmultipleconjectures,expressedwithmorethanoneequalsign,iscalledajointhypothesisExample:Shouldagroupofexplanatoryvariablesshouldbeincludedinaparticularmodel?Example:Doesthequantitydemandedofaproductdependonthepricesofsubstitutegoods,oronlyonitsownprice?6.1JointHypothesisTesting6.1TestingJointHypothesesBothexamplesareoftheform:ThejointnullhypothesisinEq.6.1containsthreeconjectures(threeequalsigns):β4=0,β5=0,andβ6=0AtestofH0isajointtestforwhetherallthreeconjecturesholdsimultaneouslyEq.6.16.1JointHypothesisTesting6.1TestingJointHypothesesConsiderthemodel:Testwhetherornotadvertisinghasaneffectonsales–butadvertisingisinthemodelastwovariables6.1.1TestingtheEffectofAdvertising:TheF-TestEq.6.26.1JointHypothesisTestingAdvertisingwillhavenoeffectonsalesifβ3=0andβ4=0Advertisingwillhaveaneffectifβ3≠0orβ4≠0orifbothβ3andβ4arenonzeroThenullhypothesesare:6.1JointHypothesisTesting6.1.1TestingtheEffectofAdvertising:TheF-TestRelativetothenullhypothesisH0:β3=0,β4=0themodelinEq.6.2iscalledtheunrestrictedmodelTherestrictionsinthenullhypothesishavenotbeenimposedonthemodelItcontrastswiththerestrictedmodel,whichisobtainedbyassumingtheparameterrestrictionsinH0aretrue6.1JointHypothesisTesting6.1.1TestingtheEffectofAdvertising:TheF-TestWhenH0istrue,β3=0andβ4=0,andADVERTandADVERT2dropoutofthemodelTheF-testforthehypothesisH0:β3=0,β4=0isbasedonacomparisonofthesumsofsquarederrors(sumsofsquaredleastsquaresresiduals)fromtheunrestrictedmodelinEq.6.2andtherestrictedmodelinEq.6.3ShorthandnotationforthesetwoquantitiesisSSEUandSSER,respectivelyEq.6.36.1JointHypothesisTesting6.1.1TestingtheEffectofAdvertising:TheF-TestTheF-statisticdetermineswhatconstitutesalargereductionorasmallreductioninthesumofsquarederrors whereJisthenumberofrestrictions,NisthenumberofobservationsandKisthenumberofcoefficientsintheunrestrictedmodelEq.6.46.1JointHypothesisTesting6.1.1TestingtheEffectofAdvertising:TheF-TestIfthenullhypothesisistrue,thenthestatisticFhaswhatiscalledanF-distributionwithJnumeratordegreesoffreedomandN-KdenominatordegreesoffreedomIfthenullhypothesisisnottrue,thenthedifferencebetweenSSERandSSEUbecomeslargeTherestrictionsplacedonthemodelbythenullhypothesissignificantlyreducetheabilityofthemodeltofitthedata6.1JointHypothesisTesting6.1.1TestingtheEffectofAdvertising:TheF-TestTheF-testforoursalesproblemis:Specifythenullandalternativehypotheses:ThejointnullhypothesisisH0:β3=0,β4=0.ThealternativehypothesisisH0:β3≠0orβ4≠0botharenonzeroSpecifytheteststatisticanditsdistributionifthenullhypothesisistrue:HavingtworestrictionsinH0
meansJ=2Also,recallthatN=75:6.1JointHypothesisTesting6.1.1TestingtheEffectofAdvertising:TheF-TestTheF-testforoursalesproblemis(Continued):SetthesignificancelevelanddeterminetherejectionregionCalculatethesamplevalueoftheteststatisticand,ifdesired,thep-valueThecorrespondingp-valueisp=P(F(2,71)
>8.44)=0.00056.1JointHypothesisTesting6.1.1TestingtheEffectofAdvertising:TheF-TestTheF-testforoursalesproblemis(Continued):StateyourconclusionSinceF=8.44>Fc=3.126,werejectthenullhypothesisthatbothβ3=0andβ4=0,andconcludethatatleastoneofthemisnotzeroAdvertisingdoeshaveasignificanteffectuponsalesrevenue6.1JointHypothesisTesting6.1.1TestingtheEffectofAdvertising:TheF-TestConsideragainthegeneralmultipleregressionmodelwith(K-1)explanatoryvariablesandKunknowncoefficientsToexaminewhetherwehaveaviableexplanatorymodel,wesetupthefollowingnullandalternativehypotheses:6.1.2TestingtheSignificanceoftheModelEq.6.5Eq.6.66.1JointHypothesisTestingSincewearetestingwhetherornotwehaveaviableexplanatorymodel,thetestforEq.6.6issometimesreferredtoasatestoftheoverallsignificanceoftheregressionmodel.Giventhatthet-distributioncanonlybeusedtotestasinglenullhypothesis,weusetheF-testfortestingthejointnullhypothesisinEq.6.66.1JointHypothesisTesting6.1.2TestingtheSignificanceoftheModelTheunrestrictedmodelisthatgiveninEq.6.5Therestrictedmodel,assumingthenullhypothesisistrue,becomes:Eq.6.76.1JointHypothesisTesting6.1.2TestingtheSignificanceoftheModelTheleastsquaresestimatorofβ1inthisrestrictedmodelis:TherestrictedsumofsquarederrorsfromthehypothesisEq.6.6is:6.1JointHypothesisTesting6.1.2TestingtheSignificanceoftheModelThus,totesttheoverallsignificanceofamodel,butnotingeneral,theF-teststatisticcanbemodifiedandwrittenas:Eq.6.86.1JointHypothesisTesting6.1.2TestingtheSignificanceoftheModelForourproblem,note:Wearetesting:IfH0istrue:6.1JointHypothesisTesting6.1.2TestingtheSignificanceoftheModelForourproblem,note(Continued):Usinga5%significancelevel,wefindthecriticalvaluefortheF-statisticwith(3,71)degreesoffreedomisFc=2.734.Thus,werejectH0
ifF≥2.734.TherequiredsumsofsquaresareSST=3115.482andSSE=1532.084whichgiveanF-valueof:p-value=P(F≥24.459)=0.00006.1JointHypothesisTesting6.1.2TestingtheSignificanceoftheModelForourproblem,note(Continued):Since24.459>2.734,werejectH0
andconcludethattheestimatedrelationshipisasignificantoneNotethatthisconclusionisconsistentwithconclusionsthatwouldbereachedusingseparatet-testsforthesignificanceofeachofthecoefficients6.1JointHypothesisTesting6.1.2TestingtheSignificanceoftheModelWeusedtheF-testtotestwhetherβ3=0andβ4=0in:SupposewewanttotestifPRICEaffectsSALES6.1.3RelationshipBetweenthet-andF-TestsEq.6.9Eq.6.106.1JointHypothesisTestingTheF-valuefortherestrictedmodelis:The5%criticalvalueisFc=F(0.95,1,71)=3.976WerejectH0:β2=06.1JointHypothesisTesting6.1.3RelationshipBetweenthet-andF-TestsUsingthet-test:Thet-valuefortestingH0:β2=0againstH1:β2≠0ist=7.640/1.045939=7.30444Itssquareist=(7.30444)2=53.355,identicaltotheF-value6.1JointHypothesisTesting6.1.3RelationshipBetweenthet-andF-TestsTheelementsofanF-testThenullhypothesisH0
consistsofoneormoreequalityrestrictionsonthemodelparametersβk
ThealternativehypothesisstatesthatoneormoreoftheequalitiesinthenullhypothesisisnottrueTheteststatisticistheF-statisticin(6.4)Ifthenullhypothesisistrue,FhastheF-distributionwithJnumeratordegreesoffreedomandN-KdenominatordegreesoffreedomWhentestingasingleequalitynullhypothesis,itisperfectlycorrecttouseeitherthet-orF-testprocedure:theyareequivalent6.1JointHypothesisTesting6.1.3RelationshipBetweenthet-andF-TestsTheconjecturesmadeinthenullhypothesiswerethatparticularcoefficientsareequaltozeroTheF-testcanalsobeusedformuchmoregeneralhypothesesAnynumberofconjectures(≤K)involvinglinearhypotheseswithequalsignscanbetested6.1.4MoreGeneralF-Tests6.1JointHypothesisTestingConsidertheissueoftesting:IfADVERT0=$1,900permonth,then: orEq.6.116.1JointHypothesisTesting6.1.4MoreGeneralF-TestsNotethatwhenH0istrue,β3=1–3.8β4sothat: orEq.6.126.1JointHypothesisTesting6.1.4MoreGeneralF-TestsThecalculatedvalueoftheF-statisticis:Forα=0.05,thecriticalvalueisFc=3.976SinceF=0.9362<Fc=3.976,wedonotrejectH0
Weconcludethatanadvertisingexpenditureof$1,900permonthisoptimaliscompatiblewiththedata6.1JointHypothesisTesting6.1.4MoreGeneralF-TestsThet-valueist=0.9676F=0.9362isequaltot2=(0.9676)2Thep-valuesareidentical:6.1JointHypothesisTesting6.1.4MoreGeneralF-TestsSupposewehave:Inthiscase,wecannolongerusetheF-testBecauseF=t2,theF-testcannotdistinguishbetweentheleftandrighttailsasisneededforaone-tailtestWerestrictourselvestothet-distributionwhenconsideringalternativehypothesesthathaveinequalitysignssuchas<or>6.1.4aOne-tailTestEq.6.136.1JointHypothesisTestingMostsoftwarepackageshavecommandsthatwillautomaticallycomputet-andF-valuesandtheircorrespondingp-valueswhenprovidedwithanullhypothesisThesetestsbelongtoaclassoftestscalledWaldtests6.1.5UsingComputerSoftware6.1JointHypothesisTestingSupposeweconjecturethat:Weformulatethejointnullhypothesis:BecausethereareJ=2restrictionstotestjointly,weuseanF-testAt-testisnotsuitable6.1JointHypothesisTesting6.1.5UsingComputerSoftware6.2TheUseofNonsampleInformationInmanyestimationproblemswehaveinformationoverandabovetheinformationcontainedinthesampleobservationsThisnonsampleinformationmaycomefrommanyplaces,suchaseconomicprinciplesorexperienceWhenitisavailable,itseemsintuitivethatweshouldfindawaytouseit6.2TheUseofNonsampleInformationConsiderthelog-logfunctionalformforademandmodelforbeer:Thismodelisaconvenientonebecauseitprecludesinfeasiblenegativeprices,quantities,andincome,andbecausethecoefficientsβ2
,β3,β4
,andβ5
areelasticitiesEq.6.146.2TheUseofNonsampleInformationArelevantpieceofnonsampleinformationcanbederivedbynotingthatifallpricesandincomegoupbythesameproportion,wewouldexpecttheretobenochangeinquantitydemandedForexample,adoublingofallpricesandincomeshouldnotchangethequantityofbeerconsumedThisassumptionisthateconomicagentsdonotsufferfrom‘‘moneyillusion’’6.2TheUseofNonsampleInformationHavingallpricesandincomechangebythesameproportionisequivalenttomultiplyingeachpriceandincomebyaconstant,sayλ:Eq.6.156.2TheUseofNonsampleInformationTohavenochangeinln(Q)whenallpricesandincomegoupbythesameproportion,itmustbetruethat:WecallsucharestrictionnonsampleinformationEq.6.166.2TheUseofNonsampleInformationToestimateamodel,startwith:Solvetherestrictionforoneoftheparameters,sayβ4:Eq.6.176.2TheUseofNonsampleInformationSubstitutinggives:Eq.6.186.2TheUseofNonsampleInformationTogetleastsquaresestimatesthatsatisfytheparameterrestriction,calledrestrictedleastsquaresestimates,weapplytheleastsquaresestimationproceduredirectlytotherestrictedmodel:Eq.6.196.2TheUseofNonsampleInformationLettherestrictedleastsquaresestimatesinEq.6.19bedenotedbyb*1,b*2,b*3,andb*5Toobtainanestimateforβ4,weusetherestriction:Byusingtherestrictionwithinthemodel,wehaveensuredthattheestimatesobeytheconstraint:6.2TheUseofNonsampleInformationPropertiesofthisrestrictedleastsquaresestimationprocedure:Therestrictedleastsquaresestimatorisbiased,unlesstheconstraintsweimposeareexactlytrueTherestrictedleastsquaresestimatoristhatitsvarianceissmallerthanthevarianceoftheleastsquaresestimator,whethertheconstraintsimposedaretrueornot6.2TheUseofNonsampleInformation6.3ModelSpecificationInanyeconometricinvestigation,choiceofthemodelisoneofthefirststepsWhataretheimportantconsiderationswhenchoosingamodel?Whataretheconsequencesofchoosingthewrongmodel?Aretherewaysofassessingwhetheramodelisadequate?6.3ModelSpecificationItispossiblethatachosenmodelmayhaveimportantvariablesomittedOureconomicprinciplesmayhaveoverlookedavariable,orlackofdatamayleadustodropavariableevenwhenitisprescribedbyeconomictheory6.3.1OmittedVariables6.3ModelSpecificationConsiderthemodel:Eq.6.206.3ModelSpecification6.3.1OmittedVariablesIfweincorrectlyomitwife’seducation:Eq.6.216.3ModelSpecification6.3.1OmittedVariablesRelativetoEq.6.20,omittingWEDUleadsustooverstatetheeffectofanextrayearofeducationforthehusbandbyabout$2,000Omissionofarelevantvariable(definedasonewhosecoefficientisnonzero)leadstoanestimatorthatisbiasedThisbiasisknownasomitted-variablebias6.3ModelSpecification6.3.1OmittedVariablesWriteageneralmodelas:Omittingx3isequivalenttoimposingtherestrictionβ3=0ItcanbeviewedasanexampleofimposinganincorrectconstraintontheparametersEq.6.226.3ModelSpecification6.3.1OmittedVariablesThebiasis:Eq.6.236.3ModelSpecification6.3.1OmittedVariablesTable6.1CorrelationMatrixforVariablesUsedinFamilyIncomeExample6.3ModelSpecification6.3.1OmittedVariablesNotethat:β3>0becausehusband’seducationhasapositiveeffectonfamilyincome.becausehusband’sandwife’slevelsofeducationarepositivelycorrelated.Thus,thebiasispositive6.3ModelSpecification6.3.1OmittedVariablesNowconsiderthemodel:NoticethatthecoefficientestimatesforHEDUandWEDUhavenotchangedagreatdealThisoutcomeoccursbecauseKL6isnothighlycorrelatedwiththeeducationvariablesEq.6.246.3ModelSpecification6.3.1OmittedVariablesYoutothinkthatagoodstrategyistoincludeasmanyvariablesaspossibleinyourmodel.Doingsowillnotonlycomplicateyourmodelunnecessarily,butmayalsoinflatethevariancesofyourestimatesbecauseofthepresenceofirrelevantvariables.6.3.2IrrelevantVariables6.3ModelSpecificationYoutothinkthatagoodstrategyistoincludeasmanyvariablesaspossibleinyourmodel.Doingsowillnotonlycomplicateyourmodelunnecessarily,butmayalsoinflatethevariancesofyourestimatesbecauseofthepresenceofirrelevantvariables.6.3ModelSpecification6.3.2IrrelevantVariablesConsiderthemodel:Theinclusionofirrelevantvariableshasreducedtheprecisionoftheestimatedcoefficientsforothervariablesintheequation6.3ModelSpecification6.3.2IrrelevantVariablesSomepointsforchoosingamodel:ChoosevariablesandafunctionalformonthebasisofyourtheoreticalandgeneralunderstandingoftherelationshipIfanestimatedequationhascoefficientswithunexpectedsigns,orunrealisticmagnitudes,theycouldbecausedbyamisspecificationsuchastheomissionofanimportantvariableOnemethodforassessingwhetheravariableoragroupofvariablesshouldbeincludedinanequationistoperformsignificancetests6.3.3ChoosingtheModel6.3ModelSpecificationSomepointsforchoosingamodel(Continued):ConsidervariousmodelselectioncriteriaTheadequacyofamodelcanbetestedusingageneralspecificationtestknownasRESET6.3ModelSpecification6.3.3ChoosingtheModelTherearethreemainmodelselectioncriteria:R2AICSC(BIC)6.3.4ModelSelectionCriteria6.3ModelSpecificationAcommonfeatureofthecriteriawedescribeisthattheyaresuitableonlyforcomparingmodelswiththesamedependentvariable,notmodelswithdifferentdependentvariableslikeyandln(y)6.3ModelSpecification6.3.4ModelSelectionCriteriaTheproblemisthatR2canbemadelargebyaddingmoreandmorevariables,evenifthevariablesaddedhavenojustificationAlgebraically,itisafactthatasvariablesareaddedthesumofsquarederrorsSSEgoesdown,andthusR2goesupIfthemodelcontainsN-1variables,thenR2=16.3.4aTheAdjustedCoefficientofDetermination6.3ModelSpecificationAnalternativemeasureofgoodnessoffitcalledtheadjusted-R2,denotedas:Eq.6.256.3ModelSpecification6.3.4aTheAdjustedCoefficientofDeterminationTheAkaikeinformationcriterion(AIC)isgivenby:6.3.4bInformationCriteriaEq.6.266.3ModelSpecificationSchwarzcriterion(SC),alsoknownastheBayesianinformationcriterion(BIC)isgivenby:Eq.6.276.3ModelSpecification6.3.4bInformationCriteriaTable6.2Goodness-of-FitandInformationCriteriaforFamilyIncomeExample6.3ModelSpecification6.3.4bInformationCriteriaAmodelcouldbemisspecifiedif:wehaveomittedimportantvariablesincludedirrelevantoneschosenawrongfunctionalformhaveamodelthatviolatestheassumptionsofthemultipleregressionmodel6.3.5RESET6.3ModelSpecificationRESET(REgressionSpecificationErrorTest)isdesignedtodetectomittedvariablesandincorrectfunctionalform6.3ModelSpecification6.3.5RESETSupposewehavethemodel:Letthepredictedvaluesofybe:Eq.6.286.3ModelSpecification6.3.5RESETNowconsiderthefollowingtwoartificialmodels:Eq.6.29Eq.6.306.3ModelSpecification6.3.5RESETInEq.6.29atestformisspecificationisatestofH0:γ1=0againstthealternativeH1:γ1≠0InEq.6.30,testingH0:γ1=γ2=0againstH1:γ1≠0and/orγ2≠0isatestformisspecification6.3ModelSpecification6.3.5RESETApplyingRESETtoourproblem(Eq.6.24),weget:Inbothcasesthenullhypothesisofnomisspecificationisrejectedata5%significancelevel6.3ModelSpecification6.3.5RESET6.4PoorDataQuality,Collinearity,andInsignificanceWhendataaretheresultofanuncontrolledexperiment,manyoftheeconomicvariablesmaymovetogetherinsystematicwaysSuchvariablesaresaidtobecollinear,andtheproblemislabeledcollinearity6.4PoorDataQuality,Collinearity,andInsignificanceConsiderthemodel:Thevarianceoftheleastsquaresestimatorforβ2is:6.4.1TheConsequencesofCollinearityEq.6.316.4PoorDataQuality,Collinearity,andInsignificanceExactorextremecollinearityexistswhenx2andx3areperfectlycorrelated,inwhichcaser23=1andvar(b2)goestoinfinitySimilarly,ifx2exhibitsnovariationequalszeroandvar(b2)againgoestoinfinityInthiscasex2iscollinearwiththeconstantterm6.4PoorDataQuality,Collinearity,andInsignificance6.4.1TheConsequencesofCollinearityIngeneral,wheneverthereareoneormoreexactlinearrelationshipsamongtheexplanatoryvariables,thentheconditionofexactcollinearityexistsInthiscasetheleastsquaresestimatorisnotdefinedWecannotobtainestimatesofβk’susingtheleastsquaresprinciple6.4PoorDataQuality,Collinearity,andInsignificance6.4.1TheConsequencesofCollinearityTheeffectsofthisimpreciseinformationare:Whenestimatorstandarderrorsarelarge,itislikelythattheusualt-testswillleadtotheconclusionthatparameterestimatesarenotsignificantlydifferentfromzeroEstimatorsmaybeverysensitivetotheadditionordeletionofafewobservations,ortothedeletionofanapparentlyinsignificantvariableAccurateforecastsmaystillbepossibleifthenatureofthecollinearrelationshipremainsthesamewithintheout-of-sampleobservations6.4PoorDataQuality,Collinearity,andInsignificance6.4.1TheConsequencesofCollinearityAregressionofMPGonCYLyields:NowaddENGandWGT:6.4.2AnExample6.4PoorDataQuality,Collinearity,andInsignificanceOnesimplewaytodetectcollinearrelationshipsistousesamplecorrelationcoefficientsbetweenpairsofexplanatoryvariablesThesesamplecorrelationsaredescriptivemeasuresoflinearassociationHowever,insomecasesinwhichcollinearrelationshipsinvolvemorethantwooftheexplanatoryvariables,thecollinearitymaynotbedetectedbyexaminingpairwisecorrelations6.4.3IdentifyingandMitigatingCollinearity6.4PoorDataQuality,Collinearity,andInsignificanceTryanauxiliarymodel:IfR2fromthisartificialmodelishigh,above0.80,say,theimplicationisthatalargeportionofthevariationinx2isexplainedbyvariationintheotherexplanatoryvariables6.4PoorDataQuality,Collinearity,andInsignificance6.4.3IdentifyingandMitigatingCollinearityThecollinearityproblemisthatthedatadonotcontainenough‘‘information’’abouttheindividualeffectsofexplanatoryvariablestopermitustoestimatealltheparametersofthestatisticalmodelpreciselyConsequently,onesolutionistoobtainmoreinformationandincludeitintheanalysis.Asecondway
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園餐飲供貨協(xié)議
- 附錄一國家行政機關公文處理辦法現(xiàn)代應用文書寫作(第三版)教學課件電子教案
- 2025年度個人所得稅贍養(yǎng)老人專項附加扣除協(xié)議執(zhí)行細則4篇
- 2025年度個人留學擔保合同模板
- 2025年度個人收入證明范本及稅務合規(guī)服務合同
- 2025-2030全球氫混合鍋爐行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球CO2激光冷水機行業(yè)調(diào)研及趨勢分析報告
- 2024年女職工權益保護及性別平等知識有獎知識競賽題庫及答案
- 2024年居民健康素養(yǎng)知識競賽考試題庫含答案
- 2025年個人間技術秘密保護保密合同4篇
- 高分子成型加工課件
- 消防救援-低溫雨雪冰凍惡劣天氣條件下災害防范及救援行動與安全
- 供熱管網(wǎng)工程監(jiān)理大綱
- 國家臨床醫(yī)學研究臨床中心五年發(fā)展規(guī)劃
- 移動商務內(nèi)容運營(吳洪貴)任務四 引起受眾傳播內(nèi)容要素的掌控
- 安徽新宸新材料有限公司年產(chǎn)6000噸鋰離子電池材料雙氟磺酰亞胺鋰項目環(huán)境影響報告書
- 繪本《汪汪的生日派對》
- 分手的協(xié)議書模板(5篇)
- 助產(chǎn)護理畢業(yè)論文
- 地震工程學概論課件
- 小學語文三年級下冊生字偏旁、拼音、組詞
評論
0/150
提交評論