高一數(shù)學知識點復習資料_第1頁
高一數(shù)學知識點復習資料_第2頁
高一數(shù)學知識點復習資料_第3頁
高一數(shù)學知識點復習資料_第4頁
高一數(shù)學知識點復習資料_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高一數(shù)學知識總結(jié)必修一一、集合一、集合有關(guān)概念集合的含義集合的中元素的三個特性:元素的確定性如:世界上最高的山元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}集合的表示方法:列舉法與描述法。注意:常用數(shù)集及其記法:非負整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R列舉法:{a,b,c……}描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{xR|x-3>2},{x|x-3>2}語言描述法:例:{不是直角三角形的三角形}Venn圖:4、集合的分類:有限集含有有限個元素的集合無限集含有無限個元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關(guān)系1.“包含”關(guān)系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。AA②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)③如果AB,BC,那么AC④如果AB同時BA那么A=B3.不含任何元素的集合叫做空集,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。有n個元素的集合,含有2n個子集,2n-1個真子集二、函數(shù)1、函數(shù)定義域、值域求法綜合2.、函數(shù)奇偶性與單調(diào)性問題的解題策略3、恒成立問題的求解策略4、反函數(shù)的幾種題型及方法5、二次函數(shù)根的問題——一題多解&指數(shù)函數(shù)y=a^xa^a*a^b=a^a+b(a>0,a、b屬于Q)(a^a)^b=a^ab(a>0,a、b屬于Q)(ab)^a=a^a*b^a(a>0,a、b屬于Q)指數(shù)函數(shù)對稱規(guī)律:1、函數(shù)y=a^x與y=a^-x關(guān)于y軸對稱2、函數(shù)y=a^x與y=-a^x關(guān)于x軸對稱3、函數(shù)y=a^x與y=-a^-x關(guān)于坐標原點對稱&對數(shù)函數(shù)y=loga^x如果,且,,,那么:eq\o\ac(○,1)·+;eq\o\ac(○,2)-;eq\o\ac(○,3).注意:換底公式 (,且;,且;).冪函數(shù)y=x^a(a屬于R)1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).2、冪函數(shù)性質(zhì)歸納.(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);(2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;(3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.方程的根與函數(shù)的零點1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.3、函數(shù)零點的求法:eq\o\ac(○,1)(代數(shù)法)求方程的實數(shù)根;eq\o\ac(○,2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.4、二次函數(shù)的零點:二次函數(shù).(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.(2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.(3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.三、平面向量向量:既有大小,又有方向的量.數(shù)量:只有大小,沒有方向的量.有向線段的三要素:起點、方向、長度.零向量:長度為的向量.單位向量:長度等于個單位的向量.相等向量:長度相等且方向相同的向量&向量的運算

加法運算

AB+BC=AC,這種計算法則叫做向量加法的三角形法則。

已知兩個從同一點O出發(fā)的兩個向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。

對于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法滿足所有的加法運算定律。

減法運算

與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

數(shù)乘運算

實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當λ>0時,λa的方向和a的方向相同,當λ<0時,λa的方向和a的方向相反,當λ=0時,λa=0。

設(shè)λ、μ是實數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法運算、減法運算、數(shù)乘運算統(tǒng)稱線性運算。

向量的數(shù)量積

已知兩個非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。

a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

兩個向量的數(shù)量積等于它們對應(yīng)坐標的乘積的和。四、三角函數(shù)1、善于用“1“巧解題2、三角問題的非三角化解題策略3、三角函數(shù)有界性求最值解題方法4、三角函數(shù)向量綜合題例析5、三角函數(shù)中的數(shù)學思想方法正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):函數(shù)函數(shù)性質(zhì)圖象定義域值域最值當時,;當時,.當時,;當時,.既無最大值也無最小值周期性奇偶性奇函數(shù)偶函數(shù)奇函數(shù)單調(diào)性在上是增函數(shù);在上是減函數(shù).在上是增函數(shù);在上是減函數(shù).在上是增函數(shù).對稱性對稱中心對稱軸對稱中心對稱軸對稱中心無對稱軸必修四角的頂點與原點重合,角的始邊與軸的非負半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標軸上的角的集合為3、與角終邊相同的角的集合為4、已知是第幾象限角,確定所在象限的方法:先把各象限均分等份,再從軸的正半軸的上方起,依次將各區(qū)域標上一、二、三、四,則原來是第幾象限對應(yīng)的標號即為終邊所落在的區(qū)域.5、長度等于半徑長的弧所對的圓心角叫做弧度.口訣:奇變偶不變,符號看象限.公式一:

設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設(shè)α為任意角,πα的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與-α的三角函數(shù)值之間的關(guān)系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

其他三角函數(shù)知識:

同角三角函數(shù)基本關(guān)系

⒈同角三角函數(shù)的基本關(guān)系式

倒數(shù)關(guān)系:

tanα?cotα=1

sinα?cscα=1

cosα?secα=1

商的關(guān)系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關(guān)系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

兩角和差公式

⒉兩角和與差的三角函數(shù)公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=——————

1-tanα?tanβ

tanα-tanβ

tan(α-β)=——————

1+tanα?tanβ

倍角公式

⒊二倍角的正弦、余弦和正切公式(升冪縮角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2tanα

tan2α=—————

1-tan^2(α)

半角公式

⒋半角的正弦、余弦和正切公式(降冪擴角公式)

1-cosα

sin^2(α/2)=—————

2

1+cosα

cos^2(α/2)=—————

2

1-cosα

tan^2(α/2)=—————

1+cosα

萬能公式

⒌萬能公式

2tan(α/2)

sinα=——————

1+tan^2(α/2)

1-tan^2(α/2)

cosα=——————

1+tan^2(α/2)

2tan(α/2)

tanα=——————

1-tan^2(α/2)

和差化積公式

⒎三角函數(shù)的和差化積公式

α+βα-β

sinα+sinβ=2sin—----?cos—---

22

α+βα-β

sinα-sinβ=2cos—----?sin—----

22

α+βα-β

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論