工程電磁場第三章課件_第1頁
工程電磁場第三章課件_第2頁
工程電磁場第三章課件_第3頁
工程電磁場第三章課件_第4頁
工程電磁場第三章課件_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

EngineeringElectromagnetics

W.H.HaytJr.andJ.A.BuckChapter3:ElectricFluxDensity,Gauss’Law,andDivergenceEngineeringElectromagnetics

W1FaradayExperimentHestartedwithapairofmetalspheresofdifferentsizes;thelargeroneconsistedoftwohemispheresthatcouldbeassembledaroundthesmallersphereFaradayExperimentHestartedw2+QFaradayApparatus,BeforeGroundingTheinnercharge,Q,inducesanequalandoppositecharge,-Q,ontheinsidesurfaceoftheoutersphere,byattractingfreeelectronsintheoutermaterialtowardthepositivecharge.Thismeansthatbeforetheoutersphereisgrounded,charge+Qresidesontheoutsidesurfaceoftheouterconductor.+QFaradayApparatus,BeforeGr3FaradayApparatus,AfterGroundingq=0groundattachedAttachingthegroundconnectstheoutersurfacetoanunlimitedsupplyoffreeelectrons,whichthenneutralizethepositivechargelayer.Thenetchargeontheoutersphereisthenthechargeontheinnerlayer,or-Q.FaradayApparatus,AfterGroun4InterpretationoftheFaradayExperimentq=0Faradayconcludedthatthereoccurredacharge“displacement”fromtheinnerspheretotheoutersphere.Displacementinvolvesafloworflux,

existingwithinthedielectric,andwhosemagnitudeisequivalenttotheamountof“displaced”charge.Specifically:InterpretationoftheFaraday5ElectricFluxDensityq=0Thedensityoffluxattheinnerspheresurfaceisequivalenttothedensityofchargethere(inCoul/m2)ElectricFluxDensityq=0The6VectorFieldDescriptionofFluxDensityq=0Avectorfieldisestablishedwhichpointsinthedirectionofthe“flow”ordisplacement.Inthiscase,thedirectionistheoutwardradialdirectioninsphericalcoordinates.Ateachsurface,wewouldhave:VectorFieldDescriptionofFl7Radially-DependentElectricFluxDensityq=0rAtageneralradiusrbetweenspheres,wewouldhave:ExpressedinunitsofCoulombs/m2,anddefinedovertherange(a≤r≤b)D(r)Radially-DependentElectricFl8PointChargeFieldsIfwenowlettheinnersphereradiusreducetoapoint,whilemaintainingthesamecharge,andlettheoutersphereradiusapproachinfinity,wehaveapointcharge.Theelectricfluxdensityisunchanged,butisdefinedoverallspace:C/m2(0<r<∞)Wecomparethistotheelectricfieldintensityinfreespace:V/m(0<r<∞)..andweseethat:PointChargeFieldsIfwenowl9FindingEandDfromChargeDistributionsWelearnedinChapter2that:Itnowfollowsthat:FindingEandDfromChargeDi10Gauss’LawTheelectricfluxpassingthroughanyclosedsurfaceisequaltothetotalchargeenclosedbythatsurfaceGauss’LawTheelectricfluxpa11DevelopmentofGauss’LawWedefinethedifferentialsurfacearea(avector)aswherenistheunitoutwardnormalvectortothesurface,andwheredSistheareaofthedifferentialspotonthesurfaceDevelopmentofGauss’LawWede12MathematicalStatementofGauss’LawLinecharge:Surfacecharge:Volumecharge:inwhichthechargecanexistintheformofpointcharges:Foravolumecharge,wewouldhave:oracontinuouschargedistribution:MathematicalStatementofGaus13UsingGauss’LawtoSolveforD

EvaluatedataSurfaceKnowingQ,weneedtosolveforD,usingGauss’Law:Thesolutioniseasyifwecanchooseasurface,S,overwhichtointegrate(Gaussiansurface)thatsatisfiesthefollowingtwoconditions:Theintegralnowsimplfies:Sothat:whereUsingGauss’LawtoSolvefor14Example:PointChargeFieldBeginwiththeradialfluxdensity:andconsiderasphericalsurfaceofradiusathatsurroundsthecharge,onwhich:Onthesurface,thedifferentialareais:andthis,combinedwiththeoutwardunitnormalvectoris:Example:PointChargeFieldBe15PointChargeApplication(continued)Now,theintegrandbecomes:andtheintegralissetupas:==PointChargeApplication(cont16AnotherExample:LineChargeFieldConsideralinechargeofuniformchargedensityLonthezaxisthatextendsovertherangezWeneedtochooseanappropriateGaussiansurface,beingmindfuloftheseconsiderations:Weknowfromsymmetrythatthefieldwillberadially-directed(normaltothezaxis)incylindricalcoordinates:andthatthefieldwillvarywithradiusonly:Sowechooseacylindricalsurfaceofradius,andoflengthL.AnotherExample:LineChargeF17LineChargeField(continued)Giving:Sothatfinally:LineChargeField(continued)G18AnotherExample:CoaxialTransmissionLineWehavetwoconcentriccylinders,withthezaxisdowntheircenters.SurfacechargeofdensityS

existsontheoutersurfaceoftheinnercylinder.A-directedfieldisexpected,andthisshouldvaryonlywith(likealinecharge).WethereforechooseacylindricalGaussiansurfaceoflengthLandofradius,wherea<<b.ThelefthandsideofGauss’Lawiswritten:…andtherighthandsidebecomes:AnotherExample:CoaxialTran19CoaxialTransmissionLine(continued)Wemaynowsolveforthefluxdensity:andtheelectricfieldintensitybecomes:CoaxialTransmissionLine(con20CoaxialTransmissionLine:ExteriorFieldIfaGaussiancylindricalsurfaceisdrawnoutside(b),atotalchargeofzeroisenclosed,leadingtotheconclusionthator:CoaxialTransmissionLine:Ext21ElectricFluxWithinaDifferentialVolumeElementTakingthefrontsurface,forexample,wehave:ElectricFluxWithinaDiffere22ElectricFluxWithinaDifferentialVolumeElementWenowhave:andinasimilarmanner:Therefore:minussignbecauseDx0isinwardfluxthroughthebacksurface.ElectricFluxWithinaDiffere23ChargeWithinaDifferentialVolumeElementNow,byasimilarprocess,wefindthat:andAllresultsareassembledtoyield:v=Q(byGauss’Law)whereQisthechargeenclosedwithinvolumevChargeWithinaDifferentialV24DivergenceandMaxwell’sFirstEquationMathematically,thisis:Applyingo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論