




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
圓錐曲線知識點總結最終要學習圓錐曲線學問點了,高二數學本身的學問體系而言,它主要是對數學學問的深化學習和新學問模塊的補充。圓錐曲線學問點總結有哪些你知道嗎?一起來看看圓錐曲線學問點總結,歡迎查閱!
圓錐曲線學問點大全
圓錐曲線的應用
一、考綱指要
1.會按條件建立目標函數討論變量的最值問題及變量的取值范圍問題,留意運用數形結合、幾何法求某些量的最值.
2.進一步鞏固用圓錐曲線的定義和性質解決有關應用問題的方法.
二、命題落點
1.考查地理位置等特別背景下圓錐曲線方程的應用,修建大路費用問題轉化為距離最值問題數學模型求解,如例1;
2.考查直線、拋物線等基本學問,考查運用解析幾何的方法分析問題和解決問題的力量,如例2;
3.考查雙曲線的概念與方程,考查考生分析問題和解決實際問題的力量,如例3.
例1:(2024?福建)如圖,B地在A地的正東方向4km處,C地在B地的北偏東300方向2km處,河流的沿岸PQ(曲線)上任意一點到A的距離比到B的距離遠2km.現要在曲線PQ上選一處M建一座碼頭,向B、C兩地轉運貨物.經測算,從M到B、M到C修建大路的費用分別是a萬元/km、2a萬元/km,那么修建這兩條大路的總費用最低是()
A.(2-2)a萬元B.5a萬元
C.(2+1)a萬元D.(2+3)a萬元
解析:設總費用為y萬元,則y=a?MB+2a?MC
∵河流的沿岸PQ(曲線)上任意一點到A的距離比到B的距離遠2km.,
∴曲線PG是雙曲線的一支,B為焦點,且a=1,c=2.
過M作雙曲線的焦點B對應的準線l的垂線,垂足為D(如圖).由雙曲線的其次定義,得=e,即MB=2MD.
∴y=a?2MD+2a?MC=2a?(MD+MC)≥2a?CE.(其中CE是點C到準線l的垂線段).
∵CE=GB+BH=(c-)+BC?cos600=(2-)+2×=.∴y≥5a(萬元).
答案:B.
例2:(2024?北京,理17)如圖,過拋物線y2=2px(p0)上肯定點P(x0,y0)(y00),作兩條直線分別交拋物線于A(x1,y1),B(x2,y2).
(1)求該拋物線上縱坐標為的點到其焦點F的距離;
(2)當PA與PB的斜率存在且傾斜角互補時,
求的值,并證明直線AB的斜率是非零常數.
解析:(1)當y=時,x=.
又拋物線y2=2px的準線方程為x=-,由拋物線定義得,
所求距離為.
(2)設直線PA的斜率為kPA,直線PB的斜率為kPB.
由y12=2px1,y02=2px0,相減得:,
故.同理可得,
由PA、PB傾斜角互補知,即,
所以,故.
設直線AB的斜率為kAB,由,,相減得,所以.將代入得,
所以kAB是非零常數.
例3:(2024?廣東)某中心接到其正東、正西、正北方向三個觀測點的報告:正西、正北兩個觀測點同時聽到了一聲巨響,正東觀測點聽到的時間比其他兩觀測點晚4s.已知各觀測點到該中心的距離都是1020m,試確定該巨響發(fā)生的位置.(假定當時聲音傳播的速度為340m/s,相關各點均在同一平面上)
解析:如圖,以接報中心為原點O,正東、正北方向為x軸、y軸正向,建立直角坐標系.設A、B、C分別是西、東、北觀測點,則A(-1020,0),B(1020,0),C(0,1020).
設P(x,y)為巨響發(fā)生點,由A、C同時聽到巨響聲,得|PA|=|PC|,
故P在AC的垂直平分線PO上,PO的方程為y=-x,因B點比A點晚4s聽到爆炸聲,故|PB|-|PA|=340×4=1360.
由雙曲線定義知P點在以A、B為焦點的雙曲線上,
依題意得a=680,c=1020,∴b2=c2-a2=10202-6802=5×3402,
故雙曲線方程為.用y=-x代入上式,得x=±680,
∵|PB||PA|,∴x=-680,y=680,即P(-680,680),故PO=680.
答:巨響發(fā)生在接報中心的西偏北450距中心680m處.
1.圓錐曲線實際應用問題多帶有肯定的實際生活背景,考生在數學建模及解模上均不同程度地存在著肯定的困難,回到定義去,將實際問題與之相互聯(lián)系,敏捷轉化是解決此類難題的關鍵;
2.圓錐曲線的定點、定量、定值等問題是隱蔽在曲線方程中的固定不變的性質,考生往往只能浮于表面分析問題,而不能總結出其實質性的結論,致使問題討論徘徊不前,此類問題解決需留意可以從特別到一般去逐步歸納,并設法推導論證.
1.(2024?重慶)若動點()在曲線上變化,則的最大值為()A.B.
C.D.2
2.(2024?全國)設,則二次曲線的離心率的取值范圍為()A.B.C.D.
3.(2024?精華訓練三模)一個酒杯的軸截面是一條拋物線的一部分,它
的方程是x2=2y,y∈在杯內放入一個清潔球,要求清潔球能
擦凈酒杯的最底部(如圖),則清潔球的最大半徑為()
A.B.1C.D.2
4.(2024?泰州三模)在橢圓上有一點P,F1、F2是橢圓的左右焦點,△F1PF2為直角三角形,則這樣的點P有()
A.2個B.4個C.6個D.8個
5.(2024?湖南)設F是橢圓的右焦點,且橢圓上至少有21個不同的點Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...組成公差為d的等差數列,則d的取值范圍為.
6.(2024?上海)教材中坐標平面上的直線與圓錐曲線兩章內容體現出解析幾何的本質是.
7.(2024?浙江)已知雙曲線的中心在原點,
右頂點為A(1,0),點P、Q在雙曲線的右支上,
點M(m,0)到直線AP的距離為1,
(1)若直線AP的斜率為k,且|k|?,
求實數m的取值范圍;
(2)當m=+1時,△APQ的內心恰好是點M,
求此雙曲線的方程.
8.(2024?上海)如圖,直線y=x與拋物
線y=x2-4交于A、B兩點,線段AB的垂直平
分線與直線y=-5交于Q點.
(1)求點Q的坐標;
(2)當P為拋物線上位于線段AB下方
(含A、B)的動點時,求ΔOPQ面積的最大值.
9.(2024?北京春)2024年10月15日9時,神舟五號載人飛船放射升空,于9時9分50秒精確?????進入預定軌道,開頭巡天飛行.該軌道是以地球的中心為一個焦點的橢圓.選取坐標系如圖所示,橢圓中心在原點.近地點A距地面200km,遠地點B距地面350km.已知地球半徑R=6371km.
(1)求飛船飛行的橢圓軌道的方程;
(2)飛船繞地球飛行了十四圈后,于16日5時59分返回艙與推動艙分別,結束巡天飛行,飛船共巡天飛行了約,問飛船巡
天飛行的平均速度是多少km/s?(結果精確
到1km/s)(注:km/s即千米/秒)
關于雙曲線學問點總結
雙曲線方程
1.雙曲線的第肯定義:
⑴①雙曲線標準方程:.一般方程:.
⑵①i.焦點在x軸上:
頂點:焦點:準線方程漸近線方程:或
ii.焦點在軸上:頂點:.焦點:.準線方程:.漸近線方程:或,參數方程:或.
②軸為對稱軸,實軸長為2a,虛軸長為2b,焦距2c.③離心率.④準線距(兩準線的距離);通徑.⑤參數關系.⑥焦點半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點或分別為雙曲線的上下焦點)
“長加短減”原則:
構成滿意(與橢圓焦半徑不同,橢圓焦半徑要帶符號計算,而雙曲線不帶符號)
⑶等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.
⑷共軛雙曲線:以已知雙曲線的虛軸為實軸,實軸為虛軸的雙曲線,叫做已知雙曲線的共軛雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:.
⑸共漸近線的雙曲線系方程:的漸近線方程為假如雙曲線的漸近線為時,它的雙曲線方程可設為.
例如:若雙曲線一條漸近線為且過,求雙曲線的方程?
解:令雙曲線的方程為:,代入得.
⑹直線與雙曲線的位置關系:
區(qū)域①:無切線,2條與漸近線平行的直線,合計2條;
區(qū)域②:即定點在雙曲線上,1條切線,2條與漸近線平行的直線,合計3條;
區(qū)域③:2條切線,2條與漸近線平行的直線,合計4條;
區(qū)域④:即定點在漸近線上且非原點,1條切線,1條與漸近線平行的直線,合計2條;
區(qū)域⑤:即過原點,無切線,無與漸近線平行的直線.
小結:過定點作直線與雙曲線有且僅有一個交點,可以作出的直線數目可能有0、2、3、4條.
(2)若直線與雙曲線一支有交點,交點為二個時,求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.
⑺若P在雙曲線,則常用結論1:P到焦點的距離為m=n,則P到兩準線的距離比為m︰n.
簡證:=.
常用結論2:從雙曲線一個焦點到另一條漸近線的距離等于b.
雙曲線方程學問點在高考中屬于比較重要的考察點,盼望考生仔細復習,深化把握。
高二數學圓錐公式學問點
⑴集合與簡易規(guī)律:集合的概念與運算、簡易規(guī)律、充要條件
⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用
⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用
⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用
⑸平面對量:有關概念與初等運算、坐標運算、數量積及其應用
⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、肯定值不等式、不等式的應用
⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規(guī)劃、圓、直線與圓的位置關系
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用
⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布
⑿導數:導數的概念、求導、導數的應用
⒀復數:復數的概念與運算
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0
拋物線標準方程y2=2pxy2=-2p__2=2pyx2=-2py
直棱柱側面積S=c_h斜棱柱側面積S=c_h
正棱錐側面積S=1/2c_h正棱臺側面積S=1/2(c+c)h
圓臺側面積S=1/2(c+c)l=pi(R+r)l球的表面積S=4pi_r2
圓柱側面積S=c_h=2pi_h圓錐側面積S=1/2_c_l=pi_r_l
弧長公式l=a_ra是圓心角的弧度數r0扇形面積公式s=1/2_l_r
錐體體積公式V=1/3_S_H圓錐體體積公式V=1/3_pi_r2h
斜棱柱體積V=SL注:其中,S是直截面面積,L是側棱長
柱體體積公式V=s_h圓柱體V=p_r2h
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數的關系X1+X2=-b/aX1_X2=c/a注:韋達定理
判別式
b2-4ac=0注:方程有兩個相等的實根
b2-4ac0注:方程有兩個不等的實根
b2-4ac0注:方程沒有實根,有共軛復數根
兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- CAB 1028-2014地毯復合型汽車腳墊
- CAB 1026-2014汽車配件用品知名品牌評定方法
- 輪胎企業(yè)綠色采購政策與供應鏈優(yōu)化考核試卷
- 2024年高密度電阻率儀資金需求報告代可行性研究報告
- 數據庫設計中的對象關系映射技術試題及答案
- 網絡文學隔音寫作環(huán)境租賃協(xié)議書
- 2025年中國保健按摩椅行業(yè)市場前景預測及投資價值評估分析報告
- 高端私人飛機消毒清潔解決方案租賃協(xié)議書
- 2025年中國半球諧振陀螺儀行業(yè)市場前景預測及投資價值評估分析報告
- 智能家居設備全國代理及品牌合作授權合同
- 注射相關感染預防與控制-護理團標
- 建標造函【2007】8號文
- 一型糖尿病患者健康宣教
- 高中歷史學科知識講座
- 陪診服務的項目計劃書
- 井控設備課件
- 假設檢驗完整
- 14S501-2 雙層井蓋圖集
- 吉林市生育保險待遇申領審批表
- 2021年成人高等教育學士學位英語水平考試真題及答案
- 人教版八年級下冊數學期末試卷綜合測試卷(word含答案)
評論
0/150
提交評論