2030年國家充電網(wǎng)絡(luò)報告_第1頁
2030年國家充電網(wǎng)絡(luò)報告_第2頁
2030年國家充電網(wǎng)絡(luò)報告_第3頁
2030年國家充電網(wǎng)絡(luò)報告_第4頁
2030年國家充電網(wǎng)絡(luò)報告_第5頁
已閱讀5頁,還剩132頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

The2030National

ChargingNetwork:

EstimatingU.S.Light-DutyDemandfor

ElectricVehicleChargingInfrastructure

ii

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

Acknowledgments

TheauthorswouldliketoacknowledgetheJointOfficeofEnergyandTransportationandtheU.S.DepartmentofEnergy’s(DOE’s)VehicleTechnologiesOfficeforsupportingthisanalysis.SpecificthankstoDOE,U.S.DepartmentofTransportation,andJointOfficestafffortheirongoingguidance,includingJacobWard,RaphaelIsaac,PatrickWalsh,WayneKillen,RachaelNealer,LissaMyers,SuraiyaMotsinger,AlanJenn,NoelCrisostomo,KaraPodkaminer,AlexSchroeder,GabeKlein,AndrewRodgers,AndrewWishnia,andMichaelBerube.

InternalsupportattheNationalRenewableEnergyLaboratorywascriticaltocompletionofthisreport,includingfromJeffGonder,MatteoMuratori,AndrewMeintz,ArthurYip,NickReinicke,JustinRickard,ElizabethStone,MichaelDeneen,JohnFarrell,ChrisGearhart,andJohneyGreen.

TheauthorswouldalsoliketothankcolleaguesattheCaliforniaEnergyCommission(MichaelNicholasandAdamDavis)andU.S.EnvironmentalProtectionAgency(SusanBurkeandMeredithCleveland)forongoingcollaborationsthathavebeensynergistictowardtheexecutionofthisanalysis,includingsupportforEVI-ProandEVI-RoadTrip.

TimelycontributionsfromAtlasPublicPolicywerenecessarytoaccuratelyestimatethemagnitudeofcharginginfrastructureannouncementsfromthepublicandprivatesectors.ThankstoSpencerBurget,NoahGabriel,andLucyMcKenzie.

Specialthankstoexternalreviewerswhoprovidedfeedbackduringvariousphasesofthiswork.Whilereviewerswerecriticaltoimprovingthequalityofthisanalysis,theviewsexpressedinthisreportarenotnecessarilyareflectionoftheir(ortheirorganization’s)opinions.Externalreviewersincluded:

CharlesSatterfield………...EdisonElectricInstitute

JamieDunckley…………………ElectricPowerResearchInstitute

PaulJ.Allen………………EnvironmentalResourcesManagement

ColinMurchieandAlexBeatonEVgo

JamieHall,AlexanderKeros,MichaelPotter,andKellyJezierskiGeneralMotors

BrianWilkie,ChristopherCoy,andRyanWheeler…………………NationalGrid

JenRoberton………NewYorkStateDepartmentofPublicService

VincentRiscica…….NewYorkStateEnergyResearch&DevelopmentAuthority

ErickKarlen……………...ShellRechargeSolutions

MadhurBoloorandMichaelMachala…………………..ToyotaResearchInstitute

NikitaDemidov……………Trillium

SusanBurke….U.S.EnvironmentalProtectionAgency,OfficeofTransportationandAirQuality

iii

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

Authors

Theauthorsofthisreportare:

EricWood,NationalRenewableEnergyLaboratory(NREL)

BrennanBorlaug,NREL

MattMoniot,NREL

Dong-Yeon(D-Y)Lee,NREL

YanboGe,NREL

FanYang,NREL

ZhaocaiLiu,NREL

iv

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

ListofAcronyms

battery-electricvehicle

core-basedstatisticalarea

CombinedChargingSystem

directcurrent

U.S.DepartmentofEnergy

electricvehicle

electricvehicleinfrastructureanalysistoolselectricvehiclesupplyequipment

FederalHighwayAdministrationInternationalCouncilonCleanTransportationJointOfficeofEnergyandTransportation

Level1

Level2

light-dutyvehicle

NorthAmericanChargingSpecificationNationalHouseholdTravelSurveyplug-inelectricvehicle

plug-inhybridelectricvehicle

single-familyhome

stateofcharge

TravelerAnalysisFramework

BEV

CBSA

CCS

DC

DOE

EV

EVI-X

EVSE

FHWA

ICCT

JointOffice

transportationnetworkvehiclemilestraveledzero-emissionvehicle

company

L1

L2

LDV

NACS

NHTS

PEV

PHEV

SFH

SOC

TAF

TNC

VMT

ZEV

v

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

ExecutiveSummary

U.S.climategoalsforeconomywidenet-zerogreenhousegasemissionsby2050willrequirerapiddecarbonizationofthelight-dutyvehicle

1

fleet,andplug-inelectricvehicles(PEVs)arepoisedtobecomethepreferredtechnologyforachievingthisend(U.S.DepartmentofEnergy2023).ThespeedofthisintendedtransitiontoPEVsisevidentinactionstakenbygovernmentandprivateindustry,bothintheUnitedStatesandglobally.NewPEVsaleshavereached7%–10%oftheU.S.light-dutymarketasofearly2023(ArgonneNationalLaboratory2023).Globally,PEVsalesaccountedfor14%ofthelight-dutymarketin2022,withChinaandEuropeat29%and21%,respectively(IEA2023).A2021executiveorder(ExecutiveOfficeofthePresident2021)targets50%ofU.S.passengercarandlighttrucksalesaszero-emissionvehicles(ZEVs)by2030,andCaliforniahasestablishedrequirementsfor100%light-dutyZEVsalesby2035(CaliforniaAirResourcesBoard2022),withmanystatesadoptingorconsideringsimilarregulations(Khatib2022).ThesegoalsweresetpriortopassageofthelandmarkU.S.BipartisanInfrastructureLawandInflationReductionAct,whichprovidesubstantialpolicysupportthroughtaxcreditsandinvestmentgrants(ElectrificationCoalition2023).Companiesintheautomotiveindustryhavecommittedtothistransition,withmostcompaniesrapidlyexpandingofferings(BartlettandPreston2023)andmanypledgingtobecomeZEV-onlymanufacturers.TeslahasbeenaZEV-onlycompanysinceitsinceptionin2003;Audi,Fiat,Volvo,andMercedes-BenzaretargetingZEV-onlysalesby2030;andGeneralMotorsandHondaaretargetingZEV-onlysalesby2035and2040,respectively(BloombergNewEnergyFinance2022).Thecombinationofpolicyactionandindustrygoal-settinghasledanalyststoprojectthatby2030,PEVscouldaccountfor48%–61%oftheU.S.light-dutymarket(Slowiketal.2023).Thistransitionisunprecedentedinthehistoryoftheautomotiveindustryandwillrequiresupportacrossmultipledomains,includingadequatesupplychains,favorablepublicpolicy,broadconsumereducation,proactivegridintegration,and(germanetothisreport)anationalchargingnetwork.

AsestablishedbytheInfrastructureInvestmentandJobsAct,alsoknownastheBipartisanInfrastructureLaw,theJointOfficeofEnergyandTransportation(JointOffice)issettingthevisionforanationalchargingnetworkthatisconvenient,affordable,reliable,andequitabletoenableafuturewhereeveryonecanrideanddriveelectric.ThisreportsupportsthevisionoftheJointOfficebypresentingaquantitativeneedsassessment

2

foranationalchargingnetworkcapableofsupporting30–42millionPEVsontheroadby2030.

3

1Thisstudyconsiderspersonallyowned,light-dutyvehicleswithgrossvehicleweightratingof8,500poundsorless.Importantly,thisdefinitionincludesvehiclesdrivenfortransportationnetworkcompanies(ride-hailing)butexcludesmotorcycles,light-dutycommercialvehicles,andClass2band3worktrucks,theimplicationsofwhicharediscussedinSection

4

ofthisreport.

2ThisstudyispresentedasaneedsassessmentwherethenationalchargingnetworkissizedrelativetosimulateddemandfromahypotheticalPEVfleet.Thisisslightlydifferentfromaninfrastructureforecast,whichmightmakeconsiderationsforchargingprovidersbeingincentivized(byprivateinvestorsorpublicfunding)tofuture-proofinvestments,installcharginginquantitiesfarexceedingdemand,ordeploychargingaspartofalargerbusinessmodelthatconsidersutilizationasasecondarymetricofsuccess.

3NationalPEVfleetsizescenarioshavebeendevelopedusingtheNationalRenewableEnergyLaboratory’sTransportationEnergy&MobilityPathwayOptions(TEMPO)modelandareconsistentwithmultiple2030scenariosdevelopedbythirdparties.PleaseseeSection

2.2.1

foradditionaldetails.

vi

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

EstimatinginfrastructureneedsatthenationallevelisachallenginganalyticproblemthatrequiresquantifyingtheneedsoffuturePEVdriversinvarioususecases,underregion-specificenvironmentalconditions,andwithconsiderationforthebuiltenvironment.ThisanalysisleveragestheNationalRenewableEnergyLaboratory’ssuiteofelectricvehicleinfrastructureanalysistools(EVI-X)andthebestavailablereal-worlddatadescribingPEVadoptionpatterns,vehicletechnology,residentialaccess,travelprofiles,andchargingbehaviortoestimatefuturechargingneeds.MultiplePEVchargingusecasesareconsidered,includingtypicalneedstoaccommodatedailydrivingforthosewithandwithoutresidentialaccess,corridor-basedcharging

4

supportinglong-distanceroadtrips,andride-hailingelectrification.Whiletheanalysisisnationalinscope,thesimulationframeworkenablesinspectionofresultsbystateandcity,withparametricsensitivityanalysisusedtotestarangeofassumptions.Thismodelingapproachisusedtodrawthefollowingconclusions:

?Convenientandaffordablechargingat/nearhomeiscoretotheecosystembutmustbecomplementedbyreliablepublicfastcharging.IndustryfocusgroupswithprospectivePEVbuyersconsistentlyrevealthatconsumerswantchargingthatisasfastaspossible.However,consumerpreferencestendtoshiftafteraPEVpurchaseismadeandlivedexperiencewithchargingisaccumulated.HomecharginghasbeenshowntobethepreferenceofmanyPEVownersduetoitscostandconvenience.Thisdichotomysuggeststhatreliablepublicfastchargingiskeytoconsumerconfidence,butalsothatasuccessfulchargingecosystemwillprovidetherightbalanceoffastchargingandconvenientdestinationchargingintheappropriatelocations.

5

Usingsophisticatedplanningtools,thisanalysisfindsthatanationalnetworkin2030couldbecomposedof26–35millionportstosupport30–42millionPEVs.Foramid-adoptionscenarioof33millionPEVs,anationalnetworkof28millionportscouldconsistof:

o26.8millionprivatelyaccessibleLevel1andLevel2chargingportslocatedatsingle-familyhomes,multifamilyproperties,andworkplaces

6

o182,000publiclyaccessiblefastchargingportsalonghighwaycorridorsandinlocalcommunities

o1millionpubliclyaccessibleLevel2chargingportsprimarilylocatednearhomesandworkplaces(includinginhigh-densityneighborhoods,atofficebuildings,andatretailoutlets).

Incontrasttogasstations,whichtypicallyrequirededicatedstopstopubliclocations,thePEVchargingnetworkhasthepotentialtoprovidecharginginlocationsthatdonot

4ThisstudydefinescorridorsasallroadswithintheNationalHighwaySystem(FederalHighwayAdministration2017),includingtheInterstateHighwaySystem,aswellasotherroadsimportanttonationaltransportation.

5ThisstudyconsidersLevel1andLevel2alternating-current(AC)chargersratedbetween1.4and19.2kWasdestinationchargersforlight-dutyvehicles.Direct-current(DC)chargerswithnominalpowerratingsbetween150and350+kWareconsideredfastchargersforlight-dutyvehiclesinthiswork.ItistheopinionoftheauthorsthatreferringtoallDCchargingas“DCfastcharging”(DCFC)(asistypicallydone)isinappropriategiventhattheuseof“fast”asadescriptorultimatelydependsonthecapacityofthebatterybeingcharged.Aslargercapacitylight-dutyPEVsenterthemarketandmedium-andheavy-dutymodeloptionsemerge,itislikelythecasethatsomeDCchargerswillactuallybeusedtoslowlychargePEVs.Thus,thecommonpracticeofreferringtoallDCchargingasDCFCisnoticeablyabsentfromthisreport.

6ThisanalysisemploysanovelcharginginfrastructuretaxonomythatconsidersworkplacechargingasamixofpubliclyandprivatelyaccessibleinfrastructureatavarietyoflocationtypesasdiscussedinSection

2.3.2.

vii

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

requireanadditionaltriporstop.Chargingatlocationswithlongdwelltimes(at/nearhome,work,orotherdestinations)hasthepotentialtoprovidedriverswithamoreconvenientexperience.ThisnetworkmustincludereliablefastchargingsolutionstosupportPEVusecasesnoteasilyenabledbydestinationcharging,includinglong-distancetravelandride-hailing,andtomakeelectricvehicleownershipattainableforthosewithoutreliableaccesschargingwhileathomeoratwork.

?Fastchargingservesmultipleusecases,andtechnologyisevolvingrapidly.Themajorityofthe182,000fastchargingports(65%)simulatedinthemid-adoptionscenariomeettheneedsofthosewithoutaccesstoreliableovernightresidentialcharging(estimatedas3millionvehiclesby2030inthemid-adoptionscenario).Supportforride-hailingdriversandtravelersmakinglong-distancetripsaccountsfortheremainderofsimulatedfastchargingdemand(21%and14%,respectively).Whilemostnear-termfastchargingdemandissimulatedasbeingmetby150-kWDCchargers,advancesinbatterytechnologyareexpectedtostimulatedemandforhigher-powercharging.Weestimatethatby2030,DCchargersratedforatleast350kWwillbethemostprevalenttechnologyacrossthenationalfastchargingnetwork.

?Thesizeandcompositionofthe2030nationalpublicchargingnetworkwillultimatelydependonevolvingconsumerbehaviorandwillvarybycommunity.

Whilegrowthinalltypesofchargingisnecessary,theeventualsizeandcompositionofthenationalpublicchargingnetworkwillultimatelydependonthenationalrateofPEVadoption,PEVpreferencesacrossurban,suburban,andrurallocations,accesstoresidential/overnightcharging,andindividualchargingpreferences.Sensitivityanalysissuggeststhatthesize(asmeasuredbynumberofports)ofthe2030nationalpublicchargingnetworkcouldvarybyupto50%(excludingprivatelyaccessibleinfrastructure)byvaryingtheshareofplug-inhybrids,driverchargingetiquette,andaccesstoprivateworkplacecharging(seealternatescenariospresentedinSection

3.3

).Additionally,thenationalnetworkisexpectedtovarydramaticallybycommunity.Forexample,denselypopulatedareaswillrequiresignificantinvestmentstosupportthosewithoutresidentialaccessandride-hailingelectrification,whilemoreruralareasareexpectedtorequirefastchargingalonghighwaystosupportlong-distancetravelforthosepassingthrough.

?ContinuedinvestmentsinU.S.charginginfrastructurearenecessary.Acumulative

nationalcapitalinvestmentof$53–$127billion

7

incharginginfrastructureisneededby2030(includingprivateresidentialcharging)tosupport33millionPEVs.Thelargerangeofpotentialcapitalcostsfoundinthisstudyisaresultofvariableandevolvingequipmentandinstallationcostsobservedwithintheindustryacrosschargingnetworks,locations,andsitedesigns.Theestimatedcumulativecapitalinvestmentincludes:

o$22–$72billionforprivatelyaccessibleLevel1andLevel2chargingports

o$27–$44billionforpubliclyaccessiblefastchargingports

o$5–$11billionforpubliclyaccessibleLevel2chargingports.

Thecostofgridupgradesanddistributedenergyresourceshavebeenexcludedfromtheseestimates.Whiletheseexcludedcostscanbesignificantinmanycasesandwill

7Thescopeofcostestimatescanbegenerallydefinedascapitalexpensesforequipmentandinstallationnecessarytosupportvehiclecharging.PleaserefertoSection

2.3.4

foradditionaldetail.

viii

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

ultimatelybecriticalinbuildingoutthenationalchargingnetwork,theytendtobesite-specificandhavebeendeemedoutofscopeforthisanalysis.

?ExistingannouncementsputtheUnitedStatesonapathtomeet2030investmentneeds.Thisreportestimatesthata$31–$55-billioncumulativecapitalinvestmentinpubliclyaccessiblecharginginfrastructureisnecessarytosupportamid-adoptionscenarioof33millionPEVsontheroadby2030.AsofMarch2023,weestimate$23.7billionofcapitalhasbeenannouncedforpubliclyaccessiblelight-dutyPEVcharginginfrastructurethroughtheendofthedecade,

8

includingfromprivatefirms,thepublicsector(includingfederal,state,andlocalgovernments),andelectricutilities.Publicandprivateinvestmentsinpubliclyaccessiblecharginginfrastructurehaveacceleratedinrecentyears.Ifsustainedwithlong-termmarketcertaintygroundedinacceleratingconsumerdemand,thesepublicandprivateinvestmentswillputtheUnitedStatesonapathtomeetingtheinfrastructureneedssimulatedinthisreport.Existingandfutureannouncementsmaybeabletoleveragedirectandindirectincentivestodeploycharginginfrastructurethroughavarietyofprograms,includingfromtheInflationReductionActandtheLowCarbonFuelStandard,ultimatelyextendingthereachofannouncedinvestments.

Whilethisanalysispresentsaneeds-basedassessmentwherecharginginfrastructureisbroughtonlinesimultaneoustogrowthinthevehiclefleet,actualcharginginfrastructurewilllikelybenecessarybeforedemandforchargingmaterializes.Thepositionthatinfrastructureinvestmentshould“l(fā)ead”vehicledeploymentisbasedontheunderstandingthatmanydriverswillneedtoseechargingavailableatthelocationstheyfrequentandalongthehighwaystheytravelbeforebecomingconfidentinthepurchaseofanelectricvehicle(Muratorietal.2020).Ontheotherhand,infrastructureinvestmentshouldbecarefulnottoleadvehicledeploymenttothepointofcreatingprolongedperiodsofpoorutilization,therebyjeopardizingthefinancialviabilityofinfrastructureoperators.

9

Theseconsiderationssuggestthebalanceofsupplyanddemandforchargingshouldbecloselymonitoredatthelocallevelandthatstepsshouldbetakentoenabletheefficientdeploymentofcharging(definedasminimizingsoftcosts[NelderandRogers2019]),includingstreamlinedpermittingandutilityserviceconnectionprocesses(Hernandez2022).Whilenotthecasetoday,anenvironmentwhereinfrastructurecanbedeployedefficientlyenablestheindustrytoresponsivelybalancethesupplyofinfrastructuresubjecttoforecastsforunprecedentedincreasesindemand.

Thisstudyleadsustoreflectonhowcharginginfrastructureplanninghasoftenbeenanalogizedtoapyramid,withchargingathomeasthefoundation,publicfastchargingasthesmallestpartofthenetworkatthetipofthepyramid,anddestinationchargingawayfromhomeoccupyingthemiddleofthepyramid.Whilethisconcepthasservedausefulpurposeovertheyears,werecommendanewconceptualmodel.Thebalanceofpublicversusprivatechargingandfast

8BasedoninvestmenttrackingconductedbyAtlasPublicPolicy.

9Whileutilizationisakeymetrictomoststationowners,itisnottheonlymetricofsuccess.Businessmodelsunderlyingchargingnetworksarecomplexandevolving,withsomestationscollocatedwithmorelucrativeretailactivities(asisthecasewithmostgasstationstodayofferingfuelatlowermarginsthanitemsintheconveniencestore)andsomestationsdeployedatalosstohelp“complete”thenetworkinareascriticalforenablinginfrequent,long-distancetravel.Businessrelationshipsbetweenchargingnetworks,automakers,advertisers,andsitehostsalsomakeitdifficulttomeasurethesuccessofanindividualstationfromutilizationalone.

ix

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

chargingversusdestinationchargingsuggestsaplanningphilosophyakintoatree,asshownin

FigureES-1

.

Aswithatree,therearepartsofthenationalchargingnetworkthatarevisibleandthosethatarehidden.Publicchargingisthevisiblepartofthenetworkthatcanbeseenalonghighways,atpopulardestinations,andthroughdataaccessibleonline.Privatechargingisthehiddenpartofthenetworktuckedawayinpersonalgarages,atapartmentcomplexes,andatcertaintypesofworkplaces.Thisprivatenetworkisakintotherootsofatree,asitisfoundationaltotherestofthesystemandanenablerforgrowthinmorevisiblelocations.

FigureES-1.Conceptualillustrationofnationalcharginginfrastructureneeds

Ifaccesstoprivatechargingaretherootsofthesystem,areliablepublicfastchargingnetworkisthetrunk,asitbenefitsfromaccesstochargingathomeandotherprivatelocations(akeysellingpointofPEVs)andultimatelyhelpsgrowthesystembymakingPEVownershipmoreconvenient(enablingroadtripsandsupportingthosewithoutresidentialaccess).Whilefastchargingisestimatedtobearelativelysmallpartofthenationalnetworkintermsofnumberoftotalports,itrequiressignificantinvestmentandisvitaltoenablingfuturegrowthbyassuringdriverstheywillbeabletochargequicklywhenevertheyneedorwant.

Thelastpartofthesystemisabroadsetofpubliclyaccessibledestinationcharginglocationsindenseneighborhoods,officebuildings,andretailoutletswherethespeedofchargingcanbedesignedtomatchtypicalparkingtimes(“right-speeding”).Thisnetworkissimilartothebranchesofatreeinthatitsexistenceiscontingentonabroadprivatenetworkandareliablefastchargingnetwork.Aswiththebranchesofatree,thepublicdestinationchargingnetworkisill-equippedtogrowwithoutthesupportofchargingelsewhere.

x

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

Thisanalysisenvisionsafuturenationalchargingnetworkthatisstrategicinlocatingtherightamountofcharging,intherightlocations,withappropriatechargingpower.EnsuringthatthisinfrastructureisreliablewillbeessentialtoestablishingdriverconfidenceandacceleratingwidespreadadoptionofPEVs.AsuccessfulnationalchargingnetworkwillpositionPEVstoprovideasuperiordrivingexperience,lowertotalcostofownershipfordrivers,becomeprofitableforindustryparticipants,andenablegridintegration,allwhilemeetingU.S.climategoals.

xi

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

TableofContents

ExecutiveSummary v

1.Introduction 1

1.1.CurrentStateofU.S.PEVandEVSEMarkets 2

1.2.RecentChargingInfrastructureInvestmentandAnalysisStudies 3

1.3.EquityConsiderations 4

1.4.ReportMotivationandStructure 5

2.AnIntegratedApproachforMultipleLDVUseCases 6

2.1.ModelingPhilosophyandSimulationPipeline 8

2.1.1.EVI-Pro:ChargingDemandsforDailyTravel 9

2.1.2.EVI-RoadTrip:ChargingDemandsforLong-DistanceTravel 10

2.1.3.EVI-OnDemand:ChargingDemandsforRide-HailingPEVs 11

2.1.4.Utilization-BasedNetworkSizing 12

2.2.Demand-SideConsiderations:DefiningPEVUseCaseScenarios 13

2.2.1.PEVAdoptionandFleetComposition 15

2.2.2.PEVTechnologyAttributes 18

2.2.3.ResidentialChargingAccess(There’sNoPlaceLikeHome) 20

2.2.4.DrivingPatterns 23

2.2.5.ChargingBehavior 27

2.3.Supply-SideConsiderations:ChargingNetworkTerminology,Taxonomy,Utilization,

andCost 28

2.3.1.EVSETerminology 28

2.3.2.EVSETaxonomy 29

2.3.3.NetworkUtilization 30

2.3.4.Cost 33

3.TheNationalChargingNetworkof2030 35

3.1.2030ResultsbyEVSETaxonomy,PEVUseCase,andRegion 35

3.1.1.ResultsbyEVSETaxonomy 35

3.1.2.ResultsbyPEVUseCase 37

3.1.3.ResultsbyRegion 40

3.2.NetworkGrowthFrom2022to2030 49

3.3.AlternateScenarios 51

4.Discussion 56

4.1.PhilosophicalContribution 56

4.2.ModelingUncertainty 57

4.3.CostEstimateConsiderations 58

4.4.CriticalTopicsforFutureResearch 59

4.5.AccessingEVI-XCapabilities 60

References 61

Appendix:2022ModelingComparison 67

xii

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.

ListofFigures

FigureES-1.Conceptualillustrationofnationalcharginginfrastructureneeds ix

Figure1.SharedsimulationpipelineintegratingEVI-Pro,EVI-RoadTrip,andEVI-OnDemand 9

Figure2.EVI-Problockdiagramforchargingbehaviorsimulationsandnetworkdesign 10

Figure3.EVI-RoadTripblockdiagramfortrafficgeneration,chargingbehaviorsimulations,andnetwork

design 11

Figure4.EVI-OnDemandblockdiagramfordriversimulationsandrelatedassumptions 12

Figure5.Conceptualdiagramillustratingindependentdemandestimations,demandaggregation,and

integratednetworkdesign 12

Figure6.CompositehourlydemandforDCchargingbyusecaseforanillustrativeregion 13

Figure7.U.S.nationallight-dutyPEVstockunderthreeadoptionscenarios 16

Figure8.Assumedspatialdistributionof33millionPEVsin2030byCBSAandstate 17

Figure9.Spatialdistributionofnew(2019–2022)LDVregistrationsbybodytype 18

Figure10.ResidentialchargingaccessibilityscenariosasafunctionofPEVstockshare.Intheboxplot

figure,theboxreflectstheinnerquartilerange(25%–75%),withthehorizontalline

reflectingthemedianvalue.Whiskersrepresentthe5thand95thpercentilevalues,

respectively 21

Figure11.Likelihoodofovernightchargingaccessforride-hailingdriversforthebaselinescenario

acrossallmetropolitanCBSAs 22

Figure12.2017NHTSau

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論