




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ProjectGoalToenablethestudyofanewtechniquefortrafficmonitoringusinganacousticarraysensornetworkby:definingthesystemarchitectureofthesensorarrayboardderivingthesystemspecificationsofthesensorarrayboarddesigningaPCBforthesensorarrayboardandtheinterfacetothewirelesslinkPresentationOutlineIntroductiontoTrafficSurveillanceNetworksBackgroundonPassiveAcousticSensorsSystemArchitectureSystemSpecificationsPartSelectionSchematicCapturePCBLayoutFutureGoalsTechnologiesusedforRuralTrafficSurveillanceNationalSurveyconductedin2004byITS1found:26statesuseInductiveLoopDetectors(ILD)21statesuseRadarDetectors11statesuseVideoImageDetectors(VIDS)5statesuseAcousticDetectorsVehicleinfocollectedbythesensornetworksinclude:TrafficVolumeVehicleSpeedVehicleClassificationTravelTimeIncidentOccurrence1ITSorIntelligentTransportationSystemisadivisionofRITAwhichispartoftheU.S.DepartmentofTransportation(DOT).InductiveLoopDetectors(ILD)Howitworks:1ormoreloopsofwireareembeddedundertheroad&connectedtoacontrolbox.Whenavehiclepassesoverorrestsontheloop,inductanceisreducedshowingavehicleispresent.BenefitsEstablishedTechnologyNotimpactedbyenvironmentalconditionsAccurateindetectingvehiclepresencePerformswellinbothhighandlowvolumetrafficDisadvantagesHighCost(upto$10kforinitialcosts)InvasiveInstallationPotentialpoorreliabilityduetoimproperinstallationNotviableforcertainlocationsandroadconditionsUnabletodirectlymeasurespeedordirectionVideoImageDetection(VIDS)Employsmachinevisiontechnologytoautomaticallyanalyzetrafficdatacollectedw/ClosedCircuitTelevisionSystems(CCTV)Benefits:RapidIncidentdetectionWideareadetectioncapabilities(multi-lane,multi-direction)VehicleclassificationEstimatestrafficqueuesandspeedInstallationdoesnotrequirelaneclosuresCanbeintegratedwithothersensornetworksDisadvantages:HighCost(initialcost>$50k)HigherPowerthanothersensornetworksLightconditionscanaffectsurveillanceRadar-basedRoadsideSensorHowitworks:TransmitsradarpulsesAportionoftheenergyisreflectedorscatteredfromthevehicleandroadwaybacktowardthesensorThisenergyisreceivedandinterpreted.BenefitsLowPowerMostaccuratetechnologyfordetectingspeedTrafficCountaccuracyEasyinstallationLowcostDisadvantagesAccuracycanbeaffectedbyweatherconditions(hail,snow,rain)DirectionalDetectionispoorInterferencecouldoccurwithotherRFdevicesPassiveAcousticSensorsPassiveRoad-sideSensorthatreceivessoundwavesfrompassingvehicles.Benefits:LowPowerLowCostEasytoInstallDirectionalandMulti-laneDetectionAccuratelymeasurestrafficcountDisadvantages:AccuracyaffectedbyenvironmentfactorsSpeedmeasurementsarenotasaccurateasothermethodsSummaryofTrafficSurveillanceTechnologiesEmployedToday:RadarandAcousticsensorsaretheleastexpensivetodeployandarethelowestpower.VIDScollectthemostinformationandthedataprocessingpossibiltiesareendless.Acousticsensorsaretheleastaccurate,butthetechnologyisrelativelynew.Acousticsensorsfortrafficmonitoringhasroomforimprovement:ImproveaccuracyAbilitytodetectidletrafficIntelligentlyprocessdata(VehicleClassification,IncidentDetection)TechnologyTrafficVolume(Moving)TrafficVolume(Stopped)VehicleSpeedVehicleClassificationIncidentDetectionPowerCostILDsAACDCBCRadarAAACCBAVIDsBBBAACCPassiveAcousticBCBBCAACode:A–Excellent;B–Fair;C-Poor;D–Nonexistent;U–UnknownAcousticArraySensorResearchhasshownthatusingarraysofacousticsensorsnarrowsthedetectionzoneforimprovedSNR&betteraccuracyForthisprojectthefollowingconfigurationwillbeevaluated:4microphonearrayspersensor:2arraysformapairparalleltotheroad2arraysforapairorthogonaltotheroadEacharraycontains12microphonesSensorstobedeployedroad-sideabout10mabovetheroad.SensorNetworkSystemDetailsSounddetectedbyeachelementinasinglearraywillbesummedtogetherandamplified.4analogoutputswillbedigitizedseparatelyandprocessed.Processedsignalswillbetransmittedtoagatewaynodewithinthewirelesssensornetwork.SignalProcessing:ParallelPairAvehiclemovesacrossthedetectionzone(D2toD1):Asavehicleapproaches,soundreachesD2earlierthanD1.Thetimedeltawillbenegative(τ<0).Whenavehicleisatthecenterofthedetectionzone,τ=0.Asavehicleexitsthedetectionzone,τwillbepositive.Therateofchangeorslopeacrossthedetectionzonecorrespondstothevehiclespeed.Toextractthetimedelayfromtheactualsignals,thecrosscorrelationofD1andD2iscalculated:SignalProcessing:OrthogonalPairAvehiclemovesacrossthedetectionzone:Asthevehicleapproaches,soundwillreachD1earlierthanD2.Thetimedifferencewillbepositiveandincreasing(τ<0).Whenthevehicleisatthecenterofthedetectionzone,τwillpeak.Asthevehicleexitsthedetectionzone,τwillbepositiveanddecreasing.Thesoundmapforvehiclesinlanesclosertothesensor(smallery)willhavesmallerpeaksthanthoseinlanesfurtherfromsensor.SystemArchitecture2Boardstoformcompletesystem:SensorBoardMicrophoneArraysSummingStageAmplificationStageSystemBoardAnalog-to-DigitalConverterProcessorRFTransceiver(ISMbandof2.4GHz)eZ430-RF2480DemoKitfromTIchosenforSystemBoardUSB-basedwirelessdemotoolMSP430F2274Mixed-SignalMicrocontrollerCC24802.4GHzZigBeenetworkprocessor2.4GHzAntennaSensorBoardArchitectureForinitialprototype,1sensorboardperarraytoallowforarrayspacingexperimentationMajorityofSystemGainimplementedonSensorboardtomaximizeSNR.ClippingCircuitandAnti-AliasingFiltermaybeneededtoconditionsignalforADC.SystemBoardArchitectureMSP430Mixed-SignalMicrocontrollerAUXOp-AmpscanprovideextragainifneededOn-chip10-bitADCcanmultiplexin4analogchannelsfordigitizingCPUcanbeprogrammedtocomputecross-correlationfunctionsCC2480–ZigBeeProcessortotransmitdatatogatewaynodetomaincontrolcenterover2.4GHzISMbandDeterminingSensorBoardSpecsPowerSupplyRequirementsMaximumVoltageOutputSwingElementSpacingSummingStageConfigurationSystemGainAnti-AliasingFilterPowerSupplyRequirements2Specificationsneedtobedetermined:SupplyVoltagesMaximumCurrentSensorBoardneedstobeportablesolutionLowpowerBatteryoperatedReuseBatteryBoardincludedwitheZ430-RF2480DemoKit:2AAABatteriesinseries:3VsupplyCapacityofAAAs:900-1155mA/hMaximumVoltageOutputSwingNeedstobelimitedtoInputRangeofADC.DependingofADCfront-endarchitecture,overvoltageoninputscancauseconversionerrorsandinsomecasesdamagetheADC.10-bitADCintegratedontheMSP430willbeused.ADCinputrangeisprogrammablefromVcctoVss.Forthisproject,ADCwillbeprogrammedtoacceptaninputrangeof3Vto0V.NoClippingCircuitneededonSensorBoardAmplifiersonSensorboardwillnotproduceavoltagehigherthanitssupplyvoltageADContheMSP430clipsanysignalsgreaterthantheprogrammableupperinputrangelimit.Benefitsfromusingthesamepowersourcesolution!ElementSpacingSpacingb/tarrayelementswillbechosentoachievethedesireddetectionangle.DesiredDetectionAngle:Sensorboardmounted10maboveroad(z=10m)Desireddetectionzoneis2.5minanydirectionatroadlevel.DetectionAnglecanbecalculated:ExperimenttoDetermine
ElementSpacingSeveral3x4elementarraysbread-boardedw/summingstage:Array1:1.75cmx1.75cmArray2:2cmx2cmArray3:2.5cmx2.5cmDetectionAnglemeasuredbymovinga4kHzsoundsourceacrossthearrayfromafixeddistance.Vpk-pkmeasuredatsummeroutputwithOscilloscopeResultsofElementSpacingExperimentsSummingStageConfigurationOriginalDesignused1op-amptosumall12elementsNewDesignsumstheelementsin2stages:Firststagesumsthe3rowsof4elementsseparatelySecondstagesumsthe3outputsofthe1ststageNewDesignallowsformoregainwithoutlargeRImprovedRise/FallTimes(τ=RC)IncreasedBandwidth–lessGainperstage(f3dB=GBW/Gain)DeterminingSystemGainExperimentsconductedtoestimatetheamountsystemgainrequiredintherealtrafficmonitoringenvironment.Microphonearrayprototypeboardisnotportable,andoutputcannotbestored.Aportabledigitalsoundrecorderwasusedtocollectfieldsamples:2Omni-DirectionalElectretCondenserMicrophonesMicpositionscanbeconfiguredfrom45oto135o(90owaschosen)7Pre-AmpLevelsRecordedsoundclipssavedas*.WAVSystemGainExperimentStep1–CalibratethedigitalrecordertothemicrophonearrayinacontrolledenvironmentwithsamesoundsourceforeachPre-AmpLevel.MeasuredinLabw/4kHzsoundsourceArrayandRecorderinsamelocationforthemeasurementStep2–CollectFieldDataforeachapplicablePre-Amplevel5-10strafficsampleswererecordedfromaheightof25-30ftfromtheroadAverageof5vehiclespassedtherecorderduringeachsoundclipincludingmotorcycles,smallcars,andSUVs.Step3–Downloadandprocess*.WAVfilestodeterminepeaksoundlevelsMATLABcodewaswrittentoanalyzethesefilesThestartandendofeachfilewasremovedtoeliminateinterferenceThe2microphoneoutputsweresummedThemaxpeakandrmslevelswerecalculated.Step4–Relatethepeaksoundlevelsfromdigitalrecorderbacktothemicrophonearrayanddeterminetherequiredsystemgain.SystemGainResultsDigitalRecorderPeakandRMSLevelsfromTrafficSoundClipsCalculatingtheSoundSourceRatioEstimatedArrayOutputVpk-pkandRecommendedGainSettingsDigitalRecorderPeakandRMSLevelsfrom4kHzSignalinLabvs.Pre-AmpLevelArrayOutput=100mVpk-pkPreAmpLevel3optimalinfieldTocalculateVpk-pkatthearrayoutputthefollowingformulaswereused:1.2.3.TotalSystemGainNeeded=4x3.5=14Anti-AliasingFilterAnti-aliasingfiltershouldbeplacedbeforeADCPreventsharmonics,spursandbroadbandnoiseoutsideofNyquistfromaliasingbackin-bandImproperfilteringleadstoadecreaseinSNR,areduceddynamicrangeandanincreaseinunwantedspurs.ADCinputbandwidth/channel:clockrange:450kHz-1.5MHzNyquistBW:225–750kHz4chsmuxed,BWperch=56.25–187.5kHzFrequenciesofInterest<10kHzFilterDesignLow-passButterworth–flatpass-&stop-bandF3dB=20kHzforflatterphaseinpass-band1storderprovides~20dBattenuationatFADC/2.Sincemicrophoneshaveafrequencyroll-offresponse,1stordershouldbeadequate.SummaryofBoardSpecificationsParameterSpecificationPowerSupply3Vonly(2AAAbatteries)CurrentDissipationAslowaspossibleMicrophoneSpacing2.25cmx2.25cm(detectionangle~16o)SystemGain14or11dB(10*log(14))MaximumOutputSwing0-3VLowPassFilterf3dB=20kHz,Order=1Schematic-CircuitDesignArchitectureisfinalizedActiveComponentshavebeenselected:AnalogDevicesAD8544QuadRail-to-RailOpAmpSingleSupplyOperation:2.7Vto5.5VGBWP~1MHzLowsupplycurrent45uA/amplifierEmkayMD9745APZ-FOmni-DirectionalMicrophoneOperatingVoltage:2.0Vto10.0VFrequencyRange:100Hzto10kHzS/NRatio:>55dBAltiumDesigner6softwarechosenforPCBSchematicandLayoutSchematicPage1SchematicPage2PCBLayout4LayerBoard2SignalLayersGNDandPowerlayerBoardSizeis
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 32960.4-2025電動(dòng)汽車遠(yuǎn)程服務(wù)與管理系統(tǒng)技術(shù)規(guī)范第4部分:一致性測(cè)試
- 2025年心理健康教育知識(shí)考察試卷及答案
- Cytochalasin-L-生命科學(xué)試劑-MCE
- 2025年青少年心理輔導(dǎo)人才認(rèn)證考試試題及答案
- 2025年企業(yè)戰(zhàn)略與競(jìng)爭(zhēng)優(yōu)勢(shì)知識(shí)考試試卷及答案
- 2025年民事法律知識(shí)考試試卷及答案
- 2025年科學(xué)技術(shù)協(xié)會(huì)職稱考試試卷及答案
- 2025年環(huán)境科學(xué)與工程行業(yè)能力測(cè)試題及答案
- 2025年地理科學(xué)專業(yè)入學(xué)考試試卷及答案
- 2025年國(guó)家心理咨詢師執(zhí)業(yè)資格考試題及答案
- 教育事業(yè)十五五(2026-2030)發(fā)展規(guī)劃
- 2025年中醫(yī)基礎(chǔ)理論考試試題及答案
- 酒店入股合同協(xié)議書范本
- 外研版七年級(jí)英語上冊(cè)跨學(xué)科項(xiàng)目計(jì)劃
- 河南省南陽市2025年七年級(jí)英語第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含答案
- 2025年瑜伽教練認(rèn)證考試體式教學(xué)與課程設(shè)計(jì)模擬試題集(含答案詳解)
- 2025年英語專業(yè)四級(jí)(TEM4)完形填空專項(xiàng)模擬試卷(詞匯與邏輯推理)-深度解析版
- 2025年廣西高一學(xué)業(yè)水平考試模擬生物試卷試題(含答案)
- TCCEAS001-2022建設(shè)項(xiàng)目工程總承包計(jì)價(jià)規(guī)范
- 思想道德與法治(湖南師范大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年湖南師范大學(xué)
- 市質(zhì)監(jiān)站工程竣工驗(yàn)收工作流程圖
評(píng)論
0/150
提交評(píng)論