




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter3DiatomicHydrogenMolecularIonMolecularHydrogenMolecularIonMolecularOrbitalMethod(MO)HydrogenMoleculeHomo-andHetero-NuclearDiatomicMoleculesValenceBondMethod(VB)ThenatureofchemicalOneothe hievementso uantummechanicsisitsabilitytodescribethechemicalbond.ReviewofChapter SchrdingerequationcannotbesolvedyticallywhenatomhasmorethanoneelectronApproximatenumericalmethodscanbeusedtoobtaintheeigenfunctionsandeigenvaluesoftheSchrdingerequationformanyelectronatoms Anewsetofquantumnumbersforthestatesofmany-electronatomsandthegrouofthesestatesintolevelsandtermswillbeconsiderate.2ThemolecularionH+involvesthesimplestchemical2H+鍵長106pm(2.00鍵解離能255.4kJ?mol-10.097Experimental H2Bond 106pm(2.00 255kJ/mol(0.097Short-lived,couldonlybedetectedbyM.S.thespark-dischargeprocessofhydrogen H1R2TheoreticalThree-bodyThreeparticles=>NineBorn-Oppenheimer1211
1 2e2e
rB 注意理解每一項(xiàng)的物理意義yPzAByPzABRe e
E B Exactsolutionofthisequation: Inthesameyearthehydrogen sasotreatedHeitlerandLondon
ValenceBondMethodMolecularOrbitalMethodTheAsymptoticBehavior R=一種可能 0Ep(Ep(R,----
EHEH1RABB B rBTheAsymptoticBehavior R= EHRABEp(Ep(R,----
TheAsymptoticBehavior R= Ep(R,Ep(R,AtomicLinearCombinationBLinearCombinationAtomicLinearCombinationB A
B
caAcaandcb:CombinationSymmetryintheSchroedingerySymmetryinHydrogenMoleculecacb=ca=cacb=ca=cb=c(AB c:Normalization22Wavefunction,normalization22c
d
Bd
Ad
d dS,OverlapA*B*A 2Wavefunction,BondingandAnti- 22S
1 Wavefunction,BondingandAnti- 吸引兩邊的原子核把它們拉在一起 (ABWavefunction,BondingandAnti- (A EnergyofMolecule?1211erArBKEnergyofMolecule *H?d *12111
B * 2 2
rB
1 d
1 2 A
R
r B
R rAB
*
21
B 1 d
*
21
B 1 A r B r B B 2
Symmetry(Aand 1EnergyofMoleculeWhentheelectronisclosetonucleusWhentheelectronisclosetonucleusA,thecoulombattractionbetweentheelectronandnucleusB.JJ1BEnergyofMolecule *
1 B
2
d
*
1AB BAB
AR
AB AAB?
KK*A1 rBBE1sS
EnergyofMolecule ) 1J 1JCoulombJ<0ExchangeK<0ComputationofJ,K,and J1e2R1 eR1RR2/EnergyCurveofBondingandAnti-BondingMolecular鍵長2.00鍵解離能0.097
E
E1s=-
BondLength(a0-0.5-(-0.565)=0.065a.u. BondingandAnti-At ondLength(2.5a0
1J 10.4a.u
J E1s
1SHydrogenHydrogenMoleculeDissociation10.4a.u
AtEquilibriumBondLength(2.5a02,5BasisBasisSet(基組iiIn2-D raxIn3-D raxbyInN-Dcc cInN-D Here,{x,y},{x,y,z}and{1, N}areorthonormalcompletesetin2-D,3-DandN-Dspaces,respectively.SimulatetheSimulatetherealCombinationsofmathematicalfunctionsusedtorepresentatomicorbitalsH: C,N,O:1s,2s,2px,2py,()()rexp(rtoodifficulttoyticallywhen–Gaussiantypeorbitalssimplertomanipulatemathematically;combinationsofGaussian(exp)functionscanapproximateSTO’sGaussiantypeorbitals–Linearcombinationsofgaussians;e.g.,STO-?3Gaussian“primitives”tosimulatea?(“Minimalbasis
True3gaussianrUsingthevariationalmethodtosolvetheSchr?dingerequationSchr?dingerequationforgroundstateWecanrewritetheequation theinte 0 ?0 Ifwecannotknowtheeigenfunction,howcanweapproachtoenergy(also,eigenvalue)?variational ?E
SetΦandoptimizationparameterα,wecanfindoptimum ipleoftheVariationForanarbitrarybasisset,N.Themolecularorbitalcouldbeexpandedtoitapproxima ciii
c11c22cNTheThevariationmethodistofindasetofcoefficients{ci}, aketheenergyexpectationvalue? closetoE0asEiEExamle articleina
2
(x)(x
x3)
x 7
9a
2a( d 2m
a
a
E ma02m(0
a3)(aa3Realminimumenergy:Trialenergyisbiggerthanrealenergyandtherearesmalldifferencebetweenrealwavefunctionandtrial2 d x 2m[(
a3)(
2( a9))]dx2[(aa3)(a52(a
a9Integrateit,wecanCalculatethedE/dα=0andfindextremevalueof→α=-5.74andα=-0.345,minimum:α=-Inthiscase,energyoftrialfunctionis0.127h2/ma2anditisveryclosetorealvalue.MethodologyoftheVariation *i?jd c *i?jd
H cic
H i1 *idcicjij cic*id
ijMethodologyoftheVariation cicj E j cicj jEMethodologyEnPartialdifferentiationofthisequationwithrespecttonnn
cicjHijESi1 (r1,2,,Nn n
E cc
1,2,,NMethodologyoftheVariationHomoenouseuationswithvariablesc1,c2 cN.Thenecessaryandsufficientconditionfornonzerosolutions.SecularEquation(久期方程SecularSolvetheequationtofindNeigenvaluesE1,E2,…,Thelowestvaluecorrespondto owest rgylevelSubstitutingEinthelinearhomogeneousequationwitheachEi,solvethisequationgivesasetof{ci},agoodapproximationoftheexpandingcoefficientsforcorrespondingwavefunction. H+的Schrdinger方程的變分求 c c c[ era]c[
erb)?(caacbb)d
c2H 2cc c 2cc cc 2cc c b將本征值代入久期方程,并用歸一化得本征函數(shù)LinearCombinationofAtomicOrbitalsi *
AtomicOrbitalsasbasisi= Coulomb
i Resonanceii
Overlapiijd iandjfromthesameatom,i0~ iandjfromdifferentCoulombi
H
Zr
l lr Zr l
ibelongskthZZr l
rdir
Z l AttractionsfromtheotherResonance
1
Z*d i r *d l lNon-classicalterm,alsocalledhointegralinsomephysicstextbooks,reflectsthecontributionofi-joverlaptothebondstrengthoftheinvolvedtwoatoms.SeeAppendixijji*SeeAppendixijji* H*ThePropertyofHAA
=HBAHBB=SAB=SBA=
Secular (1S2)E2( 2S)E( 2) 4(1S)( 2E
2S)24(1S2)( 2 ± IfIfBE+=hBBAhh 2ElectronicenergybeforeandafterbondBf E~After:E~2(A-Biggerhimplystrongerchemical( ( 22ABBA2 R =0,h=0 Wh
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理系統(tǒng)開發(fā)合作協(xié)議
- 農(nóng)業(yè)科技推廣應(yīng)用案例分析
- 維修服務(wù)委托合同
- 金融產(chǎn)品開發(fā)合作協(xié)議
- 旅游行業(yè)游客安全與責(zé)任免除合同
- 學(xué)生自制動(dòng)漫電影小感悟
- 昆蟲記的讀后感
- 食品營養(yǎng)與健康功能性食品知識(shí)點(diǎn)題集
- 寵物行業(yè)智能門店與健康管理方案
- 市場(chǎng)營銷策略效果評(píng)估表格模板(行業(yè)A)
- 南寧水療市場(chǎng)調(diào)研分析報(bào)告
- 養(yǎng)老機(jī)構(gòu)員工考核表
- GB/T 10058-2023電梯技術(shù)條件
- 重慶停電更換絕緣子施工方案
- OHSMS職業(yè)健康安全專家講座
- 《小型局域網(wǎng)構(gòu)建》一體化課程標(biāo)準(zhǔn)
- 新教科版三年級(jí)上冊(cè)科學(xué)全冊(cè)重點(diǎn)題型練習(xí)課件(含答案)
- 藥房變更申請(qǐng)書
- 單肺通氣策略
- RT Thread設(shè)備驅(qū)動(dòng)開發(fā)指南
- 《中小學(xué)生守則》學(xué)習(xí)PPT
評(píng)論
0/150
提交評(píng)論