版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
統(tǒng)計(jì)基礎(chǔ)校企合作財(cái)經(jīng)商貿(mào)系列精品教材互聯(lián)網(wǎng)+活頁(yè)式理念新形態(tài)教材主講教師:簽到掃碼下載文旌課堂APP掃碼簽到(2022.3.2515:00至2022.3.2515:10)簽到方式教師通過(guò)“文旌課堂APP”生成簽到二維碼,并設(shè)置簽到時(shí)間,學(xué)生通過(guò)“文旌課堂APP”掃描“簽到二維碼”進(jìn)行簽到。。章節(jié)導(dǎo)讀Contents項(xiàng)目一統(tǒng)計(jì)概述項(xiàng)目二統(tǒng)計(jì)調(diào)查項(xiàng)目三
統(tǒng)計(jì)整理
項(xiàng)目四統(tǒng)計(jì)指標(biāo)項(xiàng)目五時(shí)間數(shù)列項(xiàng)目六抽樣推斷項(xiàng)目七相關(guān)分析與回歸分析項(xiàng)目八統(tǒng)計(jì)指數(shù)項(xiàng)目九統(tǒng)計(jì)報(bào)告項(xiàng)目六
抽樣推斷案例引入某公司人事部經(jīng)理整理2500位中層管理者的檔案,其中一項(xiàng)內(nèi)容是考察這些中層管理者的平均月薪及參加公司培訓(xùn)計(jì)劃的比例,則2500位中層管理者為總體。若通過(guò)查閱每位中層管理者的個(gè)人檔案,得出總體月薪均值
,標(biāo)準(zhǔn)差
,且共有1625位管理者參加了培訓(xùn)計(jì)劃,即參加公司培訓(xùn)計(jì)劃的比例
。若未能全面獲取每位中層管理者的個(gè)人檔案,而是采用抽樣推斷方法來(lái)估計(jì)總體。假設(shè)隨機(jī)抽取了一個(gè)容量為30的樣本,根據(jù)樣本數(shù)據(jù)求得樣本月薪的平均數(shù)
,標(biāo)準(zhǔn)差
,其中參加過(guò)公司培訓(xùn)計(jì)劃的人數(shù)比例
。最后用這個(gè)樣本結(jié)果分別代表2
500位中層管理者的平均月薪、月薪的標(biāo)準(zhǔn)差和參加過(guò)培訓(xùn)計(jì)劃的人數(shù)比例。若多次進(jìn)行上述的簡(jiǎn)單隨機(jī)抽樣,則可以得到多個(gè)不同的樣本結(jié)果。人事部經(jīng)理認(rèn)為,在一次抽樣中得到的中層管理者的平均月薪與總體均值的誤差在500元以內(nèi),他就可以接受樣本估計(jì)值的結(jié)果,那么在一次抽樣中,誤差在500元以內(nèi)的可能性有多大?案例引入思考:案例中抽樣推斷方法的原理是什么?適用范圍有哪些?案例中有哪些抽樣推斷相關(guān)的基本概念?根據(jù)抽取的30位管理者的樣本數(shù)據(jù)推斷總體參數(shù)的方法屬于哪種估計(jì)方法?如何理解抽樣誤差?若要針對(duì)其他案例進(jìn)行簡(jiǎn)單隨機(jī)抽樣,如何合理確定樣本容量和抽樣組織形式?達(dá)成目標(biāo)知識(shí)目標(biāo)技能目標(biāo)思政目標(biāo)(1)理解抽樣推斷的適用范圍、優(yōu)點(diǎn)和基本概念;(2)掌握抽樣誤差、點(diǎn)估計(jì)和區(qū)間估計(jì)的計(jì)算方法;(3)了解抽樣誤差的影響因素和種類;(4)了解影響樣本容量的因素。(1)學(xué)會(huì)計(jì)算抽樣平均誤差和抽樣極限誤差;(2)能結(jié)合實(shí)際資料進(jìn)行點(diǎn)估計(jì)和區(qū)間估計(jì),并確定必要樣本容量。(1)通過(guò)學(xué)習(xí)抽樣推斷方法,體會(huì)利用局部推斷整體的思想;(2)理解抽樣誤差的概念,學(xué)會(huì)計(jì)算并控制產(chǎn)品加工中的誤差,培養(yǎng)嚴(yán)謹(jǐn)?shù)目茖W(xué)精神。任務(wù)一
認(rèn)識(shí)抽樣推斷任務(wù)二組織抽樣推斷項(xiàng)目導(dǎo)航任務(wù)一
認(rèn)識(shí)抽樣推斷課前預(yù)習(xí)——請(qǐng)觀看視頻自學(xué)抽樣誤差的概念
抽樣誤差
任務(wù)描述本任務(wù)主要學(xué)習(xí)抽樣推斷的適用范圍、優(yōu)點(diǎn)、基本概念,抽樣誤差的概念和影響因素,以及如何計(jì)算各類抽樣平均誤差和抽樣極限誤差,知識(shí)精講。知識(shí)精講抽樣推斷也稱抽樣估計(jì)或抽樣調(diào)查,在統(tǒng)計(jì)調(diào)查部分已經(jīng)對(duì)抽樣調(diào)查的概念、特點(diǎn)、組織形式及總體和樣本的概念進(jìn)行了介紹,本項(xiàng)目中不再贅述。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣推斷的適用范圍與優(yōu)點(diǎn)(一)抽樣推斷的適用范圍(1)有些總體在測(cè)量或試驗(yàn)時(shí)具有破壞性,不可能進(jìn)行全面調(diào)查。例如,燈泡耐用時(shí)間試驗(yàn)、電視機(jī)抗震能力試驗(yàn)、罐頭食品的衛(wèi)生檢查和人體白細(xì)胞數(shù)量的化驗(yàn)等都具有破壞性,不可能進(jìn)行全面調(diào)查,只能使用抽樣調(diào)查。(2)有些總體不必要進(jìn)行全面調(diào)查。例如,某片森林里樹(shù)木的數(shù)量、職工的家庭生活狀況等都是有限總體,可以進(jìn)行全面調(diào)查,但需要耗費(fèi)較多的人力、物力和時(shí)間。因此,對(duì)這類總體不必要進(jìn)行全面調(diào)查,一般采取抽樣調(diào)查方法即可。(3)有些無(wú)限總體不可能進(jìn)行全面調(diào)查。例如,連續(xù)大量生產(chǎn)某種零件時(shí),零件總產(chǎn)量是無(wú)限的,要了解零件的質(zhì)量情況,不可能進(jìn)行全面調(diào)查,因而對(duì)于類似的無(wú)限總體只能進(jìn)行抽樣調(diào)查。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣推斷的適用范圍與優(yōu)點(diǎn)(二)抽樣推斷的優(yōu)點(diǎn)1.節(jié)省人力、費(fèi)用和時(shí)間,組織靈活與全面調(diào)查相比,抽樣推斷的調(diào)查單位較少,組織靈活,既能節(jié)約人力、費(fèi)用和時(shí)間,又能較快得到調(diào)查結(jié)果,這對(duì)許多工作都是很有利的。2.部分情況下抽樣推斷的結(jié)果比全面調(diào)查要準(zhǔn)確全面調(diào)查的調(diào)查單位多,需要的調(diào)查人員多且其水平參差不齊,因此出現(xiàn)登記性誤差的可能性就大。而抽樣推斷的調(diào)查單位少,需要的調(diào)查人員少且可以通過(guò)嚴(yán)格培訓(xùn)提升其調(diào)查水平,因而發(fā)生登記性誤差的可能性就小。同時(shí),抽樣推斷遵循隨機(jī)原則進(jìn)行抽樣,可以有效控制其代表性誤差。因此,在這種情況下,抽樣推斷的結(jié)果比全面調(diào)查的結(jié)果更為準(zhǔn)確。3.可以用于工業(yè)生產(chǎn)過(guò)程中的質(zhì)量控制抽樣推斷既能廣泛用于生產(chǎn)結(jié)果的核算和估計(jì),又能對(duì)連續(xù)大量生產(chǎn)的產(chǎn)品在生產(chǎn)過(guò)程中進(jìn)行質(zhì)量控制,檢查生產(chǎn)過(guò)程是否正常并及時(shí)采取措施干預(yù),降低廢品率。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、抽樣推斷的基本概念(一)總體參數(shù)和樣本統(tǒng)計(jì)量1.總體參數(shù)(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、抽樣推斷的基本概念(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、抽樣推斷的基本概念2.樣本統(tǒng)計(jì)量(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、抽樣推斷的基本概念(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、抽樣推斷的基本概念(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、抽樣推斷的基本概念(二)重復(fù)抽樣和不重復(fù)抽樣從總體中抽取樣本的方法有重復(fù)抽樣和不重復(fù)抽樣兩種。1.重復(fù)抽樣重復(fù)抽樣是指從總體個(gè)單位中隨機(jī)抽取容量為的樣本,每次從總體中抽取一個(gè)單位觀察記錄后再放回總體中,然后進(jìn)行下一次的抽取,直至抽出個(gè)單位。因此,重復(fù)抽樣的樣本是由n次相互獨(dú)立的連續(xù)試驗(yàn)組成的,且所有單位每次被抽中的機(jī)會(huì)完全相同。2.不重復(fù)抽樣不重復(fù)抽樣是指從總體個(gè)單位中隨機(jī)抽取容量為的樣本,每次從總體中抽取一個(gè)單位觀察記錄后就不再放回總體中,連續(xù)進(jìn)行次抽選構(gòu)成抽樣樣本。因此,不重復(fù)抽樣具有2個(gè)特點(diǎn):①樣本由次連續(xù)抽選的結(jié)果組成,等同于一次同時(shí)從總體中抽取個(gè)單位;②連續(xù)次抽選的結(jié)果不是相互獨(dú)立的。由于前一次的抽取結(jié)果會(huì)影響下一次的抽樣,且每抽取一次總體的單位數(shù)就少一個(gè),因此,每個(gè)單位被抽中與否的概率都不相等。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、抽樣推斷的基本概念(三)樣本容量和樣本個(gè)數(shù)1.樣本容量樣本容量是指一個(gè)樣本所包含的單位數(shù)。一般將樣本單位數(shù)的樣本稱為大樣本,將的樣本稱為小樣本。社會(huì)經(jīng)濟(jì)統(tǒng)計(jì)的抽樣調(diào)查多屬于大樣本調(diào)查。2.樣本個(gè)數(shù)樣本個(gè)數(shù)是指從一個(gè)總體中可能抽取的樣本數(shù),又稱樣本可能數(shù)目。一個(gè)總體有多少樣本,則樣本統(tǒng)計(jì)量就有多少種取值,從而形成該統(tǒng)計(jì)量的分布,此分布是抽樣推斷的基礎(chǔ)。重復(fù)抽樣與不重復(fù)抽樣下可能抽取的樣本數(shù)不同。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差(一)抽樣誤差的概念及影響因素1.抽樣誤差的概念
抽樣誤差是指樣本指標(biāo)和總體指標(biāo)之間數(shù)量上的差別,即樣本平均數(shù)與總體平均數(shù)之差和樣本成數(shù)與總體成數(shù)之差。抽樣誤差包括登記性誤差和代表性誤差。
登記性誤差是指由于計(jì)量、記錄、匯總等過(guò)程中調(diào)查人員及被調(diào)查者的主客觀原因所產(chǎn)生的誤差,這種誤差是可以消除的。
代表性誤差包含兩個(gè)部分。一部分是指破壞了抽樣的隨機(jī)原則而產(chǎn)生的誤差,也稱系統(tǒng)性誤差,如抽選到一個(gè)單位后,調(diào)查者認(rèn)為它偏低或偏高,把它剔除掉而產(chǎn)生的偏差。另一部分是由于抽樣的隨機(jī)性而產(chǎn)生的代表性誤差,通常稱為抽樣誤差或隨機(jī)誤差,這種誤差是必然會(huì)產(chǎn)生的,但可以對(duì)該誤差進(jìn)行計(jì)算并加以控制。素養(yǎng)提升誤差是無(wú)處不在的,在產(chǎn)品生產(chǎn)過(guò)程中就可能存在誤差,要提高產(chǎn)品的生產(chǎn)效率和質(zhì)量,需要合理控制誤差。例如,一些設(shè)備就具備自我故障監(jiān)控系統(tǒng),這大大提高了設(shè)備的先進(jìn)性和可靠性??茖W(xué)的發(fā)展是無(wú)窮盡的,人們會(huì)不斷地發(fā)現(xiàn)和提出新的問(wèn)題,也正是這些無(wú)盡的問(wèn)題引導(dǎo)著我們?nèi)ヌ剿?、去?chuàng)新,從而推動(dòng)科學(xué)不斷地向前發(fā)展。所以我們?cè)谖磥?lái)不論是從事統(tǒng)計(jì)工作還是其他工作,都要勇于創(chuàng)新,不斷研究新設(shè)備、新技術(shù)和新方法,更好地提升社會(huì)經(jīng)濟(jì)生產(chǎn)效率。相關(guān)知識(shí)(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差2.抽樣誤差的影響因素(1)總體各單位標(biāo)志值的變異程度??傮w被研究標(biāo)志的變異程度與抽樣誤差成正比關(guān)系變化,即總體各單位標(biāo)志值的變異程度越大,抽樣誤差越大;反之,總體各單位標(biāo)志值的變異程度越小,則抽樣誤差越小。若總體各單位標(biāo)志值都相等,即標(biāo)準(zhǔn)差為零,則不存在抽樣誤差。(2)抽取樣本的單位數(shù)。在其他條件不變的情況下,抽取的樣本單位數(shù)越多,抽樣誤差越??;反之,抽取的樣本單位數(shù)越少,抽樣誤差越大,即抽樣誤差的大小和樣本單位數(shù)成反比關(guān)系變化。這是因?yàn)闃颖締挝粩?shù)越多,即在總體中的比例越高,樣本就越能體現(xiàn)總體的基本特征。若抽樣單位數(shù)與總體單位數(shù)相等,則抽樣推斷指標(biāo)就等于總體參數(shù),也就不存在抽樣誤差。(3)抽樣方法。一般來(lái)說(shuō),在一個(gè)總體中抽取相同的樣本單位數(shù),重復(fù)抽樣下的誤差比不重復(fù)抽樣下的誤差要大。(4)抽樣推斷的組織形式。抽樣誤差除了受上述因素影響外,還受不同的抽樣組織形式的影響。抽樣推斷的組織形式包括簡(jiǎn)單隨機(jī)抽樣、分層抽樣、等距抽樣和整群抽樣等。其中,與簡(jiǎn)單隨機(jī)抽樣相比,等距抽樣或分層抽樣的樣本代表性較強(qiáng),因此,其抽樣誤差要小一些。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、抽樣推斷的基本概念(三)樣本容量和樣本個(gè)數(shù)1.樣本容量樣本容量是指一個(gè)樣本所包含的單位數(shù)。一般將樣本單位數(shù)的樣本稱為大樣本,將的樣本稱為小樣本。社會(huì)經(jīng)濟(jì)統(tǒng)計(jì)的抽樣調(diào)查多屬于大樣本調(diào)查。2.樣本個(gè)數(shù)樣本個(gè)數(shù)是指從一個(gè)總體中可能抽取的樣本數(shù),又稱樣本可能數(shù)目。一個(gè)總體有多少樣本,則樣本統(tǒng)計(jì)量就有多少種取值,從而形成該統(tǒng)計(jì)量的分布,此分布是抽樣推斷的基礎(chǔ)。重復(fù)抽樣與不重復(fù)抽樣下可能抽取的樣本數(shù)不同。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差(二)抽樣平均誤差1.抽樣平均誤差的概念與意義在一個(gè)總體抽取多個(gè)樣本,就能得到不同的樣本統(tǒng)計(jì)量即抽樣指標(biāo),將各個(gè)可能的抽樣指標(biāo)與總體參數(shù)之間存在的抽樣誤差的所有結(jié)果都考慮在內(nèi),再利用平方平均數(shù)的方法求得標(biāo)準(zhǔn)差,即為抽樣平均誤差。因此,抽樣平均誤差就是一系列抽樣指標(biāo)(平均指標(biāo)或成數(shù))的標(biāo)準(zhǔn)差。抽樣平均誤差概括地反映了抽樣誤差的一般水平。因此,抽樣平均誤差既是衡量抽樣指標(biāo)對(duì)于總體參數(shù)代表性程度的尺度,也是計(jì)算抽樣指標(biāo)與總體參數(shù)之間變異范圍的根據(jù)。同時(shí),在進(jìn)行抽樣推斷時(shí),它也是確定抽樣單位數(shù)的計(jì)算依據(jù)之一??傊?,抽樣平均誤差對(duì)于整個(gè)抽樣推斷分析具有很重要的意義。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差2.抽樣平均誤差的計(jì)算方法(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差知識(shí)點(diǎn):三、抽樣誤差(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差知識(shí)點(diǎn):三、抽樣誤差例如,某燈泡廠對(duì)10000個(gè)產(chǎn)品的使用壽命進(jìn)行檢驗(yàn),隨機(jī)抽取2%的樣本進(jìn)行測(cè)試,抽樣產(chǎn)品的使用壽命資料如表6-1所示。根據(jù)燈泡質(zhì)量規(guī)定,使用壽命在1000小時(shí)以上的產(chǎn)品為合格品。試計(jì)算其抽樣平均誤差。表6-1抽樣產(chǎn)品使用壽命資料使用壽命/小時(shí)組中值燈泡數(shù)/個(gè)900以下8752900~9509254950~1000975111000~10501025711050~11001075841100~11501125181150~1200117571200以上12253合計(jì)—200知識(shí)點(diǎn):三、抽樣誤差(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差(三)抽樣極限誤差1.抽樣極限誤差的概念(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差(三)抽樣極限誤差2.抽樣極限誤差的計(jì)算方法1)抽樣判斷的可信程度進(jìn)行抽樣推斷時(shí),抽樣極限誤差不僅與抽樣平均誤差即抽樣推斷的準(zhǔn)確度有關(guān),還與其估計(jì)的可靠程度或可信程度有關(guān)。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差圖6-1正態(tài)分布及其曲線下的面積(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差應(yīng)用正態(tài)分布曲線,把概率度和抽樣誤差范圍聯(lián)系起來(lái),便可得到抽樣推斷總體參數(shù)在一定范圍內(nèi)的概率保證程度。概率度與概率保證程度對(duì)照表如表6-2所示。表6-2概率度與概率保證程度對(duì)照表(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):三、抽樣誤差任務(wù)二
組織抽樣推斷課前預(yù)習(xí)——請(qǐng)觀看視頻自學(xué)區(qū)間估計(jì)的概念
區(qū)間估計(jì)
任務(wù)描述本任務(wù)主要學(xué)習(xí)根據(jù)必要樣本容量的影響因素如何合理確定抽樣調(diào)查的樣本容量,并利用獲得的樣本指標(biāo)進(jìn)行點(diǎn)估計(jì)和區(qū)間估計(jì),推斷總體指標(biāo)。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣估計(jì)的方法1.點(diǎn)估計(jì)的含義點(diǎn)估計(jì)是指不考慮抽樣誤差的影響,先根據(jù)樣本資料計(jì)算樣本指標(biāo),再以樣本指標(biāo)值直接作為相應(yīng)的總體指標(biāo)估計(jì)值,即例如,某車間生產(chǎn)了一批電子零件,隨機(jī)抽取了10個(gè)對(duì)其耐用時(shí)間和合格率進(jìn)行檢測(cè),檢測(cè)結(jié)果如下:平均耐用時(shí)間,合格率。若運(yùn)用點(diǎn)估計(jì)方法估計(jì)和,則這批電子零件的平均耐用時(shí)間,合格率。點(diǎn)估計(jì)的優(yōu)點(diǎn)是直觀、計(jì)算簡(jiǎn)便,一般用于估計(jì)對(duì)抽樣推斷的準(zhǔn)確性和可靠性要求不高的情況。其缺點(diǎn)是沒(méi)有考慮抽樣誤差的影響,也未指明誤差在一定范圍內(nèi)的可靠性的大小。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣估計(jì)的方法2.點(diǎn)估計(jì)量的優(yōu)良標(biāo)準(zhǔn)1)無(wú)偏性無(wú)偏性是指以樣本指標(biāo)估計(jì)總體指標(biāo),樣本指標(biāo)的均值應(yīng)等于被估計(jì)的總體指標(biāo)。進(jìn)行抽樣估計(jì)時(shí),每次估計(jì)都會(huì)產(chǎn)生抽樣誤差,且在進(jìn)行多次重復(fù)抽樣估計(jì)后,所有估計(jì)值的均值應(yīng)該等于總體指標(biāo),即這表明,以樣本平均數(shù)作為總體平均數(shù)的估計(jì)量、以樣本成數(shù)作為總體成數(shù)的估計(jì)量是符合無(wú)偏性要求的,且這樣的估計(jì)量稱為無(wú)偏估計(jì)量。2)有效性作為優(yōu)良的估計(jì)量,除了滿足無(wú)偏性的要求外,還需要滿足有效性要求,即其方差應(yīng)該比其他估計(jì)量的方差小。例如,利用樣本平均數(shù)或總體中某一變量值來(lái)估計(jì)總體平均數(shù),雖然兩者作為總體指標(biāo)的估計(jì)量都滿足無(wú)偏性要求,且每次估計(jì)中兩種估計(jì)量與總體平均數(shù)都有可能有離差,但比較來(lái)看,樣本平均數(shù)的離差更小,則稱樣本平均數(shù)為比總體某一變量值更有效的估計(jì)量。3)一致性一致性又稱相合性,是指以樣本指標(biāo)估計(jì)總體指標(biāo),隨著樣本單位數(shù)的增大,樣本估計(jì)量將在概率意義下越來(lái)越接近于總體指標(biāo)真實(shí)值。即當(dāng)樣本單位數(shù)足夠大時(shí),樣本指標(biāo)與估計(jì)的總體指標(biāo)的絕對(duì)差距小于任意小數(shù),并且根據(jù)抽樣平均誤差計(jì)算公式可得其誤差接近于零。這表明,樣本平均數(shù)和成數(shù)作為總體平均數(shù)和成數(shù)的估計(jì)量符合一致性要求。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣估計(jì)的方法(二)區(qū)間估計(jì)1.區(qū)間估計(jì)的含義區(qū)間估計(jì)就是把樣本指標(biāo)和抽樣極限誤差結(jié)合起來(lái)推算出總體指標(biāo)的可能范圍,并給出總體指標(biāo)落在這個(gè)范圍的概率保證程度。區(qū)間估計(jì)是利用樣本指標(biāo)推斷總體指標(biāo)的主要方法。區(qū)間估計(jì)必須同時(shí)具備3個(gè)要素:估計(jì)值、抽樣極限誤差和概率保證程度。其中,抽樣極限誤差范圍決定抽樣估計(jì)的準(zhǔn)確性,概率保證程度決定抽樣估計(jì)的可靠性。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣估計(jì)的方法(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣估計(jì)的方法知識(shí)點(diǎn):一、抽樣估計(jì)的方法(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣估計(jì)的方法(2)給定概率保證程度,要求對(duì)總體指標(biāo)做出區(qū)間估計(jì)。具體計(jì)算步驟:①根據(jù)抽取的樣本計(jì)算樣本指標(biāo),進(jìn)而計(jì)算出抽樣平均誤差。②根據(jù)給定的概率保證程度,查正態(tài)分布概率表找出概率度t值。③根據(jù)概率度t值和抽樣平均誤差計(jì)算出抽樣極限誤差,在此基礎(chǔ)上得出總體指標(biāo)的置信區(qū)間。
(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣估計(jì)的方法(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣估計(jì)的方法(2)給定概率保證程度,要求對(duì)總體指標(biāo)做出區(qū)
間估計(jì)。具體計(jì)算步驟:①根據(jù)抽取的樣本計(jì)算樣本指標(biāo),進(jìn)而計(jì)算出抽樣平均誤差。②根據(jù)給定的概率保證程度,查正態(tài)分布概率表找出概率度值。③根據(jù)概率度值和抽樣平均誤差計(jì)算出抽樣極限誤差,在此基礎(chǔ)上得出總體指標(biāo)的置信區(qū)間。
(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):一、抽樣估計(jì)的方法知識(shí)點(diǎn):一、抽樣估計(jì)的方法(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、確定必要樣本容量(一)合理確定樣本容量的意義要進(jìn)行抽樣推斷,先要獲得樣本指標(biāo)。因此,為保證抽樣推斷的可靠性和準(zhǔn)確性,必須在調(diào)查方案中確定好樣本容量,即必須明確應(yīng)從總體中抽取多少個(gè)體進(jìn)行調(diào)查。如果樣本容量過(guò)大,將耗費(fèi)較多的人力、財(cái)力、物力和時(shí)間;反之,若樣本容量過(guò)小,則樣本對(duì)總體缺乏足夠的代表性,雖然能夠節(jié)省調(diào)查費(fèi)用但調(diào)查誤差較大,難以保證推斷結(jié)果的精確度和可靠性。因此,合理確定樣本容量對(duì)于抽樣推斷具有重要意義:一方面,可以在既定的調(diào)查費(fèi)用下,使抽樣誤差盡可能小,以保證推算的精確度和可靠性;另一方面,可以在既定的精確度和可靠性下,使調(diào)查費(fèi)用盡可能少,以保證抽樣調(diào)查的最大效果。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、確定必要樣本容量(二)影響必要樣本容量的因素1.總體標(biāo)志值的變異程度在其他條件相同的情況下,樣本容量應(yīng)與總體標(biāo)志值的變異程度成正比變化。即總體的方差或標(biāo)準(zhǔn)差越大,標(biāo)志值的變異程度越大,則抽樣誤差越大,樣本容量就應(yīng)該大一些;反之,總體的方差或標(biāo)準(zhǔn)差越小,標(biāo)志值的變異程度越小,則抽樣誤差越小,樣本容量就應(yīng)該小一些。2.允許誤差的大小在其他條件相同的情況下,樣本容量應(yīng)與允許誤差的大小成反比變化。抽樣推斷的允許誤差越小,即精確度要求越高,樣本容量應(yīng)越大;反之,允許誤差越大,即精確度要求越低,樣本容量應(yīng)越小。進(jìn)行抽樣推斷時(shí),應(yīng)根據(jù)研究目的和總體的性質(zhì)、特點(diǎn)等來(lái)確定允許誤差范圍。3.概率保證程度的大小在其他條件相同的情況下,樣本容量應(yīng)與概率保證程度成正比變化。即概率保證程度越大,抽樣推斷的可靠程度要求越高,樣本容量應(yīng)越大;反之,概率保證程度越小,抽樣推斷的可靠程度要求越低,樣本容量應(yīng)越小。4.抽樣方法和組織形式的不同在相同的條件下,重復(fù)抽樣的抽樣平均誤差比不重復(fù)抽樣的抽樣平均誤差大,因此,重復(fù)抽樣需要更大的樣本容量才能滿足相同的允許誤差和置信水平要求。同時(shí),相同條件下采用等距抽樣或分層抽樣時(shí),樣本容量可以小一些;若采用簡(jiǎn)單隨機(jī)抽樣或整群抽樣,樣本容量就應(yīng)該大一些。(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、確定必要樣本容量(三)必要樣本容量的確定方法(一)平均指標(biāo)概述1.平均指標(biāo)的概念平均指標(biāo)又稱平均數(shù),能夠表明社會(huì)經(jīng)濟(jì)現(xiàn)象總體中各單位的某一數(shù)量標(biāo)志在一定時(shí)間、地點(diǎn)、條件下所達(dá)到的一般水平。在研究大量社會(huì)經(jīng)濟(jì)現(xiàn)象總體的一般數(shù)量特征時(shí),平均指標(biāo)是最常用的綜合指標(biāo)。例如,要研究某班級(jí)學(xué)生總體成績(jī)的一般水平,就可以通過(guò)計(jì)算平均成績(jī)來(lái)分析該班級(jí)學(xué)生成績(jī)的綜合情況。平均指標(biāo)具有3個(gè)特點(diǎn):①抽象性。平均指標(biāo)將總體內(nèi)各單位標(biāo)志值的差異抽象化。②代表性。平均指標(biāo)是總體內(nèi)各單位標(biāo)志值的一般水平,對(duì)總體具有代表性。③平均指標(biāo)的數(shù)值不隨總體范圍的變化而變化。知識(shí)點(diǎn):二、確定必
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省淮安市2024-2025學(xué)年高一第一學(xué)期期末調(diào)研測(cè)試數(shù)學(xué)試題(含答案)
- 2025年度幕墻工程勞務(wù)分包合同風(fēng)險(xiǎn)評(píng)估與防控措施3篇
- 2024版:專業(yè)技術(shù)人員聘用協(xié)議3篇
- 2024食用油產(chǎn)品退貨及售后服務(wù)合同3篇
- 2025年度個(gè)人二手房交易稅費(fèi)減免專項(xiàng)合同3篇
- 2024版造林綠化承包合同
- 福建省南平市舊縣中學(xué)高二數(shù)學(xué)理聯(lián)考試卷含解析
- 福建省南平市建州高級(jí)中學(xué)2021年高一地理下學(xué)期期末試卷含解析
- 2024行政事業(yè)單位內(nèi)部控制規(guī)范與內(nèi)部控制風(fēng)險(xiǎn)防范合同3篇
- 2024蔬菜買賣合同
- 《神經(jīng)發(fā)展障礙 兒童社交溝通障礙康復(fù)規(guī)范》
- 2025年中建六局二級(jí)子企業(yè)總經(jīng)理崗位公開(kāi)招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年遼寧省大連市普通高中學(xué)業(yè)水平合格性考試模擬政治試題(一)
- 2024版戶外廣告牌安裝與維護(hù)服務(wù)合同2篇
- 云南省昆明市五華區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 安徽省合肥市第四十中學(xué)2024~2025學(xué)年九年級(jí)上學(xué)期化學(xué)期末模擬試題(含答案)
- 安徽省淮北市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)部編版期末考試((上下)學(xué)期)試卷及答案
- 注漿工安全技術(shù)措施
- 大學(xué)生職業(yè)生涯規(guī)劃
- 干燥綜合征的護(hù)理查房
- 江蘇省徐州市2023-2024學(xué)年六年級(jí)上學(xué)期期末科學(xué)試卷(含答案)2
評(píng)論
0/150
提交評(píng)論