2017學(xué)年高中數(shù)學(xué)人教A版必修4示范教案:第三章第一節(jié)兩角和與差的正弦、余弦和正切公式(第二課時)Word版含解析_第1頁
2017學(xué)年高中數(shù)學(xué)人教A版必修4示范教案:第三章第一節(jié)兩角和與差的正弦、余弦和正切公式(第二課時)Word版含解析_第2頁
2017學(xué)年高中數(shù)學(xué)人教A版必修4示范教案:第三章第一節(jié)兩角和與差的正弦、余弦和正切公式(第二課時)Word版含解析_第3頁
2017學(xué)年高中數(shù)學(xué)人教A版必修4示范教案:第三章第一節(jié)兩角和與差的正弦、余弦和正切公式(第二課時)Word版含解析_第4頁
2017學(xué)年高中數(shù)學(xué)人教A版必修4示范教案:第三章第一節(jié)兩角和與差的正弦、余弦和正切公式(第二課時)Word版含解析_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第三章第一節(jié)兩角和與差的正弦、余弦和正切公式第二課時eq\o(\s\up7(),\s\do5(整體設(shè)計))教學(xué)分析1.兩角和與差的正弦、余弦、正切公式是在研究了兩角差的余弦公式的基礎(chǔ)上,進(jìn)一步研究具有“兩角和差”關(guān)系的正弦、余弦、正切公式的.在這些公式的推導(dǎo)中,教科書都把對照、推得公式C(α+β),又如比較sin(α-β)與cos(α-β),它們包含的角相同但函數(shù)名稱不同,這就要求進(jìn)行函數(shù)名的互化,利用誘導(dǎo)公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.通過對“兩角和與差的正弦、余弦、正切公式”的推導(dǎo),揭示了兩角和、差的三角函數(shù)與這兩角的三角函數(shù)的運算規(guī)律,還使學(xué)生加深了數(shù)學(xué)公式的推導(dǎo)、證明方法的理解.因此本節(jié)內(nèi)容也是培養(yǎng)學(xué)生運算能力和邏輯思維能力的重要內(nèi)容,對培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力,發(fā)現(xiàn)問題和解決問題的能力都有著十分重要的意義.3.本節(jié)的幾個公式是相互聯(lián)系的,其推導(dǎo)過程也充分說明了它們之間的內(nèi)在聯(lián)系,讓學(xué)生深刻領(lǐng)會它們的這種聯(lián)系,從而加深對公式的理解和記憶.本節(jié)幾個例子主要目的是為了訓(xùn)練學(xué)生思維的有序性,逐步培養(yǎng)他們良好的思維習(xí)慣,教學(xué)中應(yīng)當(dāng)有意識地對學(xué)生的思維習(xí)慣進(jìn)行引導(dǎo),例如在面對問題時,要注意先認(rèn)真分析條件,明確要求,再思考應(yīng)該聯(lián)系什么公式,使用公式時要具備什么條件等.另外,還要重視思維過程的表述,不能只看最后結(jié)果而不顧過程表述的正確性、簡捷性等,這些都是培養(yǎng)學(xué)生三角恒等變換能力所不能忽視的.三維目標(biāo)1.在學(xué)習(xí)兩角差的余弦公式的基礎(chǔ)上,通過讓學(xué)生探索、發(fā)現(xiàn)并推導(dǎo)兩角和與差的正弦、余弦、正切公式,了解它們之間的內(nèi)在聯(lián)系,并通過強化題目的訓(xùn)練,加深對公式的理解,培養(yǎng)學(xué)生的運算能力及邏輯推理能力,從而提高解決問題的能力.2.通過兩角和與差的正弦、余弦、正切公式的運用,會進(jìn)行簡單的求值、化簡、恒等證明,使學(xué)生深刻體會聯(lián)系變化的觀點,自覺地利用聯(lián)系變化的觀點來分析問題,提高學(xué)生分析問題、解決問題的能力.3.通過本節(jié)學(xué)習(xí),使學(xué)生掌握尋找數(shù)學(xué)規(guī)律的方法,提高學(xué)生的觀察分析能力,培養(yǎng)學(xué)生的應(yīng)用意識,提高學(xué)生的數(shù)學(xué)素質(zhì).重點難點教學(xué)重點:兩角和與差的正弦、余弦、正切公式及其推導(dǎo).教學(xué)難點:靈活運用所學(xué)公式進(jìn)行求值、化簡、證明.課時安排2課時eq\o(\s\up7(),\s\do5(教學(xué)過程))第1課時導(dǎo)入新課思路1.(舊知導(dǎo)入)教師先讓學(xué)生回顧上節(jié)課所推導(dǎo)的兩角差的余弦公式,并把公式默寫在黑板上或打出幻燈片,注意有意識地讓學(xué)生寫整齊.然后教師引導(dǎo)學(xué)生觀察cos(α-β)與cos(α+β)、sin(α-β)的內(nèi)在聯(lián)系,進(jìn)行由舊知推出新知的轉(zhuǎn)化過程,從而推導(dǎo)出C(α+β)、S(α-β)、S(α+β).本節(jié)課我們共同研究公式的推導(dǎo)及其應(yīng)用.思路2.(問題導(dǎo)入)教師出示問題,先讓學(xué)生計算以下幾個題目,既可以復(fù)習(xí)回顧上節(jié)所學(xué)公式,又為本節(jié)新課作準(zhǔn)備.若sinα=eq\f(\r(5),5),α∈(0,eq\f(π,2)),cosβ=eq\f(\r(10),10),β∈(0,eq\f(π,2)),求cos(α-β),cos(α+β)的值.學(xué)生利用公式C(α-β)很容易求得cos(α-β),但是如果求cos(α+β)的值就得想法轉(zhuǎn)化為公式C(α-β)的形式來求,此時思路受阻,從而引出新課題,并由此展開聯(lián)想探究其他公式.推進(jìn)新課eq\b\lc\\rc\(\a\vs4\al\co1(新知探究))eq\b\lc\\rc\(\a\vs4\al\co1(提出問題))①還記得兩角差的余弦公式嗎?請一位同學(xué)到黑板上默寫出來.②在公式C(α-β)中,角β是任意角,請學(xué)生思考角α-β中β?lián)Q成角-β是否可以?此時觀察角α+β與α-(-β)之間的聯(lián)系,如何利用公式C(α-β)來推導(dǎo)cos(α+β)=?③分析觀察C(α+β)的結(jié)構(gòu)有何特征?④在公式C(α-β)、C(α+β)的基礎(chǔ)上能否推導(dǎo)sin(α+β)=?sin(α-β)=?⑤公式S(α-β)、S(α+β)的結(jié)構(gòu)特征如何?⑥對比分析公式C(α-β)、C(α+β)、S(α-β)、S(α+β),能否推導(dǎo)出tan(α-β)=?tan(α+β)=?⑦分析觀察公式T(α-β)、T(α+β)的結(jié)構(gòu)特征如何?⑧思考如何靈活運用公式解題?活動:對問題①,學(xué)生默寫完后,教師打出課件,然后引導(dǎo)學(xué)生觀察兩角差的余弦公式,點撥學(xué)生思考公式中的α,β既然可以是任意角,是怎樣任意的?你會有些什么樣的奇妙想法呢?鼓勵學(xué)生大膽猜想,引導(dǎo)學(xué)生比較cos(α-β)與cos(α+β)中角的內(nèi)在聯(lián)系,學(xué)生有的會發(fā)現(xiàn)α-β中的角β可以變?yōu)榻牵?,所以α?-β)=α+β〔也有的會根據(jù)加減運算關(guān)系直接把和角α+β化成差角α-(-β)的形式〕.這時教師適時引導(dǎo)學(xué)生轉(zhuǎn)移到公式C(α-β)上來,這樣就很自然地得到cos(α+β)=cos[α-(-β)]=cosαcos(-β)+sinαsin(-β)=cosαcosβ-sinαsinβ.所以有如下公式:eq\x(cosα+β=cosαcosβ-sinαsinβ)我們稱以上等式為兩角和的余弦公式,記作C(α+β).對問題②,教師引導(dǎo)學(xué)生細(xì)心觀察公式C(α+β)的結(jié)構(gòu)特征,可知“兩角和的余弦,等于這兩角的余弦積減去這兩角的正弦積”,同時讓學(xué)生對比公式C(α-β)進(jìn)行記憶,并填空:cos75°=cos(__________)=__________=__________.對問題③,上面學(xué)生推得了兩角和與差的余弦公式,教師引導(dǎo)學(xué)生觀察思考,怎樣才能得到兩角和與差的正弦公式呢?我們利用什么公式來實現(xiàn)正、余弦的互化呢?學(xué)生可能有的想到利用誘導(dǎo)公式(5)(6)來化余弦為正弦(也有的想到利用同角的平方和關(guān)系式sin2α+cos2α=1來互化,此法讓學(xué)生課下進(jìn)行),因此有sin(α+β)=cos[eq\f(π,2)-(α+β)]=cos[(eq\f(π,2)-α)-β]=cos(eq\f(π,2)-α)cosβ+sin(eq\f(π,2)-α)sinβ=sinαcosβ+cosαsinβ.在上述公式中,β用-β代之,則sin(α-β)=sin[α+(-β)]=sinαcos(-β)+cosαsin(-β)=sinαcosβ-cosαsinβ.因此我們得到兩角和與差的正弦公式,分別簡記為S(α+β)、S(α-β).sinα+β=sinαcosβ+cosαsinβ,sinα-β=sinαcosβ-cosαsinβ.對問題④⑤,教師恰時恰點地引導(dǎo)學(xué)生觀察公式的結(jié)構(gòu)特征并結(jié)合推導(dǎo)過程進(jìn)行記憶,同時進(jìn)一步體會本節(jié)公式的探究過程及公式變化特點,體驗三角公式的這種簡潔美、對稱美.為強化記憶,教師可讓學(xué)生填空,如sin(θ+φ)=____________________,sineq\f(2π,7)coseq\f(5π,7)+coseq\f(2π,7)sineq\f(5π,7)=__________.對問題⑥,教師引導(dǎo)學(xué)生思考,在我們推出了公式C(α-β)、C(α+β)、S(α+β)、S(α-β)后,自然想到兩角和與差的正切公式,怎么樣來推導(dǎo)出tan(α-β)=?,tan(α+β)=?呢?學(xué)生很容易想到利用同角三角函數(shù)關(guān)系式,化弦為切得到.在學(xué)生探究推導(dǎo)時很可能想不到討論,這時教師不要直接提醒,讓學(xué)生自己悟出來.當(dāng)cos(α+β)≠0時,tan(α+β)=eq\f(sinα+β,cosα+β)=eq\f(sinαcosβ+cosαsinβ,cosαcosβ-sinαsinβ).如果cosαcosβ≠0,即cosα≠0且cosβ≠0時,分子、分母同除以cosαcosβ得tan(α+β)=eq\f(tanα+tanβ,1-tanαtanβ),據(jù)角α、β的任意性,在上面的式子中,β用-β代之,則有tan(α-β)=eq\f(tanα+tan-β,1-tanαtan-β)=eq\f(tanα-tanβ,1+tanαtanβ).由此推得兩角和、差的正切公式,簡記為T(α-β)、T(α+β).tanα+β=,tanα-β=.對問題⑥,讓學(xué)生自己聯(lián)想思考,兩角和與差的正切公式中α、β、α±β的取值是任意的嗎?學(xué)生回顧自己的公式探究過程可知,α、β、α±β都不能等于eq\f(π,2)+kπ(k∈Z),并引導(dǎo)學(xué)生分析公式結(jié)構(gòu)特征,加深公式記憶.T(α+β)叫和角公式;S(α-β)、C(α-β)、T(α-β)叫差角公式.并由學(xué)生歸納總結(jié)以上六個公式的推導(dǎo)過程,從而得出以下邏輯聯(lián)系圖.可讓學(xué)生自己畫出這六個框圖.通過邏輯聯(lián)系圖,深刻理解它們之間的內(nèi)在聯(lián)系,借以理解并靈活運用這些公式.同時教師應(yīng)提醒學(xué)生注意:不僅要掌握這些公式的正用,還要注意它們的逆用及變形用.如兩角和與差的正切公式的變形式tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtanβ),在化簡求值中就經(jīng)常應(yīng)用到,使解題過程大大簡化,也體現(xiàn)了數(shù)學(xué)的簡潔美.對于兩角和與差的正切公式,當(dāng)tanα,tanβ或tan(α±β)的值不存在時,不能使用T(α±β)處理某些有關(guān)問題,但可改用誘導(dǎo)公式或其他方法,例如:化簡tan(eq\f(π,2)-β),因為taneq\f(π,2)的值不存在,所以改用誘導(dǎo)公式tan(eq\f(π,2)-β)=eq\f(sin\f(π,2)-β,cos\f(π,2)-β)=eq\f(cosβ,sinβ)來處理等.eq\b\lc\\rc\(\a\vs4\al\co1(應(yīng)用示例))思路1例1已知sinα=-eq\f(3,5),α是第四象限角,求sin(eq\f(π,4)-α),cos(eq\f(π,4)+α),tan(eq\f(π,4)-α)的值.活動:教師引導(dǎo)學(xué)生分析題目中角的關(guān)系,在面對問題時要注意認(rèn)真分析條件,明確要求.再思考應(yīng)該聯(lián)系什么公式,使用公式時要有什么準(zhǔn)備,準(zhǔn)備工作怎么進(jìn)行等.例如本題中,要先求出cosα,tanα的值,才能利用公式得解,本題是直接應(yīng)用公式解題,目的是為了讓學(xué)生初步熟悉公式的應(yīng)用,教師可以完全讓學(xué)生自己獨立完成.解:由sinα=-eq\f(3,5),α是第四象限角,得cosα=eq\r(1-sin2α)=eq\r(1--\f(3,5)2)=eq\f(4,5).∴tanα=eq\f(sinα,cosα)=-eq\f(3,4).于是有sin(eq\f(π,4)-α)=sineq\f(π,4)cosα-coseq\f(π,4)sinα=eq\f(\r(2),2)×eq\f(4,5)-eq\f(\r(2),2)×(-eq\f(3,5))=eq\f(7\r(2),10),cos(eq\f(π,4)+α)=coseq\f(π,4)cosα-sineq\f(π,4)sinα=eq\f(\r(2),2)×eq\f(4,5)-eq\f(\r(2),2)×(-eq\f(3,5))=eq\f(7\r(2),10),tan(α-eq\f(π,4))=eq\f(tanα-tan\f(π,4),1+tanαtan\f(π,4))=eq\f(tanα-1,1+tanα)=eq\f(-\f(3,4)-1,1+-\f(3,4))=-7.點評:本例是運用和差角公式的基礎(chǔ)題,安排這個例題的目的是為了訓(xùn)練學(xué)生思維的有序性,逐步培養(yǎng)他們良好的思維習(xí)慣.變式訓(xùn)練1.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=eq\f(\r(2),2)×eq\f(\r(3),2)-eq\f(\r(2),2)×eq\f(1,2)=eq\f(\r(6)-\r(2),4),tan105°=tan(60°+45°)=eq\f(tan60°+tan45°,1-tan60°tan45°)=eq\f(\r(3)+1,1-\r(3))=-(2+eq\r(3)).2.設(shè)α∈(0,eq\f(π,2)),若sinα=eq\f(3,5),則eq\r(2)sin(α+eq\f(π,4))等于()A.eq\f(7,5)B.eq\f(1,5)C.eq\f(7,2)D.4答案:A例2已知sinα=eq\f(2,3),α∈(eq\f(π,2),π),cosβ=-eq\f(3,4),β∈(π,eq\f(3π,2)).求sin(α-β),cos(α+β),tan(α+β).活動:教師可先讓學(xué)生自己探究解決,對探究困難的學(xué)生教師給以適當(dāng)?shù)狞c撥,指導(dǎo)學(xué)生認(rèn)真分析題目中已知條件和所求值的內(nèi)在聯(lián)系.根據(jù)公式S(α-β)、C(α+β)、T(α+β)應(yīng)先求出cosα、sinβ、tanα、tanβ的值,然后利用公式求值,但要注意解題中三角函數(shù)值的符號.解:由sinα=eq\f(2,3),α∈(eq\f(π,2),π),得cosα=-eq\r(1-sin2α)=-eq\r(1-\f(2,3)2)=-eq\f(\r(5),3),∴tanα=-eq\f(2\r(5),5).又由cosβ=-eq\f(3,4),β∈(π,eq\f(3π,2)),得sinβ=-eq\r(1-cos2β)=-eq\r(1--\f(3,4)2)=-eq\f(\r(7),4),∴tanβ=eq\f(\r(7),3).∴sin(α-β)=sinαcosβ-cosαsinβ=eq\f(2,3)×(-eq\f(3,4))-(-eq\f(\r(5),3))×(-eq\f(\r(7),4))=eq\f(-6-\r(35),12).∴cos(α+β)=cosαcosβ-sinαsinβ=(-eq\f(\r(5),3))×(-eq\f(3,4))-eq\f(2,3)×(-eq\f(\r(7),4))=eq\f(3\r(5)+2\r(7),12).∴tan(α+β)=eq\f(tanα+tanβ,1-tanαtanβ)=eq\f(-\f(2\r(5),5)+\f(\r(7),3),1--\f(2\r(5),5)×\f(\r(7),3))=eq\f(-6\r(5)+5\r(7),15+2\r(35))=eq\f(-32\r(5)+27\r(7),17).點評:本題仍是直接利用公式計算求值的基礎(chǔ)題,其目的還是讓學(xué)生熟練掌握公式的應(yīng)用,訓(xùn)練學(xué)生的運算能力.變式訓(xùn)練引導(dǎo)學(xué)生看章頭圖,利用本節(jié)所學(xué)公式解答課本章頭題,加強學(xué)生的應(yīng)用意識.解:設(shè)電視發(fā)射塔高CD=x米,∠CAB=α,則sinα=eq\f(30,67),在Rt△ABD中,tan(45°+α)=eq\f(x+30,30)tanα.于是x=eq\f(30tan45°+α,tanα)-30,又∵sinα=eq\f(30,67),α∈(0,eq\f(π,2)),∴cosα≈eq\f(60,67),tanα≈eq\f(1,2).tan(45°+α)=eq\f(1+tanα,1-tanα)≈eq\f(1+\f(1,2),1-\f(1,2))=3,∴x=eq\f(30×3,\f(1,2))-30=150(米).答:這座電視發(fā)射塔的高度約為150米.例3在△ABC中,sinA=eq\f(3,5)(0°<A<45°),cosB=eq\f(5,13)(45°<B<90°),求sinC與cosC的值.活動:本題是解三角形問題,在必修5中還作專門的探究,這里用到的僅是與三角函數(shù)誘導(dǎo)公式與和差公式有關(guān)的問題,難度不大,但應(yīng)是學(xué)生必須熟練掌握的.同時也能加強學(xué)生的應(yīng)用意識,提高學(xué)生分析問題和解決問題的能力.教師可讓學(xué)生自己閱讀、探究、討論解決,對有困難的學(xué)生教師引導(dǎo)學(xué)生分析題意和找清三角形各角之間的內(nèi)在聯(lián)系,從而找出解決問題的路子.教師要提醒學(xué)生注意角的范圍這一隱含條件.解:∵在△ABC中,A+B+C=180°,∴C=180°-(A+B).又∵sinA=eq\f(3,5)且0°<A<45°,∴cosA=eq\f(4,5).又∵cosB=eq\f(5,13)且45°<B<90°,∴sinB=eq\f(12,13).∴sinC=sin[180°-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=eq\f(3,5)×eq\f(5,13)+eq\f(4,5)×eq\f(12,13)=eq\f(63,65),cosC=cos[180°-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB=eq\f(3,5)×eq\f(12,13)-eq\f(4,5)×eq\f(5,13)=eq\f(16,65).點評:本題是利用兩角和差公式,來解決三角形問題的典型例子,培養(yǎng)了學(xué)生的應(yīng)用意識,也使學(xué)生更加認(rèn)識了公式的作用,解決三角形問題時,要注意三角形內(nèi)角和等于180°這一隱含條件.變式訓(xùn)練在△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,則△ABC是()A.銳角三角形B.鈍角三角形C.直角三角形D.等腰非直角三角形答案:C思路2例1若sin(eq\f(3π,4)+α)=eq\f(5,13),cos(eq\f(π,4)-β)=eq\f(3,5),且0<α<eq\f(π,4)<β<eq\f(3π,4),求cos(α+β)的值.活動:本題是一個典型的變角問題,也是一道經(jīng)典例題,對訓(xùn)練學(xué)生的運算能力以及邏輯思維能力很有價值.盡管學(xué)生思考時有點難度,但教師仍可放手讓學(xué)生探究討論,教師不可直接給出解答.對于探究不出的學(xué)生,教師可恰當(dāng)點撥引導(dǎo),指導(dǎo)學(xué)生解決問題的關(guān)鍵是尋找所求角與已知角的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生理清所求的角與已知角的關(guān)系,觀察選擇應(yīng)該選用哪個公式進(jìn)行求解,同時也要特別提醒學(xué)生注意:在求有關(guān)角的三角函數(shù)值時,要特別注意確定準(zhǔn)角的范圍,準(zhǔn)確判斷好三角函數(shù)符號,這是解決這類問題的關(guān)鍵.學(xué)生完全理清思路后,教師應(yīng)指導(dǎo)學(xué)生的規(guī)范書寫,并熟練掌握它.對于程度比較好的學(xué)生可讓其擴(kuò)展本題,或變化條件,或變換所求的結(jié)論等.如教師可變換α,β角的范圍,進(jìn)行一題多變訓(xùn)練,提高學(xué)生靈活應(yīng)用公式的能力,因此教師要充分利用好這個例題的訓(xùn)練價值.解:∵0<α<eq\f(π,4)<β<eq\f(3π,4),∴eq\f(3π,4)<eq\f(3π,4)+α<π,-eq\f(π,2)<eq\f(π,4)-β<0.又sin(eq\f(3π,4)+α)=eq\f(5,13),cos(eq\f(π,4)-β)=eq\f(3,5),∴cos(eq\f(3π,4)+α)=-eq\f(12,13),sin(eq\f(π,4)-β)=-eq\f(4,5).∴cos(α+β)=sin[eq\f(π,2)+(α+β)]=sin[(eq\f(3π,4)+α)-(eq\f(π,4)-β)]=sin(eq\f(3π,4)+α)cos(eq\f(π,4)-β)-cos(eq\f(3π,4)+α)sin(eq\f(π,4)-β)=eq\f(5,13)×eq\f(3,5)-(-eq\f(12,13))×(-eq\f(4,5))=-eq\f(33,65).本題是典型的變角問題,即把所求角利用已知角來表示,實際上就是化歸思想.這需要巧妙地引導(dǎo),充分讓學(xué)生自己動手進(jìn)行角的變換,培養(yǎng)學(xué)生靈活運用公式的能力.變式訓(xùn)練已知α,β∈(eq\f(3π,4),π),sin(α+β)=-eq\f(3,5),sin(β-eq\f(π,4))=eq\f(12,13).求cos(α+eq\f(π,4))的值.解:∵α,β∈(eq\f(3π,4),π),sin(α+β)=-eq\f(3,5),sin(β-eq\f(π,4))=eq\f(12,13),∴eq\f(3π,2)<α+β<2π,eq\f(π,2)<β-eq\f(π,4)<eq\f(3π,4).∴cos(α+β)=eq\f(4,5),cos(β-eq\f(π,4))=-eq\f(5,13).∴cos(α+eq\f(π,4))=cos[(α+β)-(β-eq\f(π,4))]=cos(α+β)cos(β-eq\f(π,4))+sin(α+β)sin(β-eq\f(π,4))=eq\f(4,5)×(-eq\f(5,13))+(-eq\f(3,5))×eq\f(12,13)=-eq\f(56,65).例2化簡eq\f(sinα-β,sinαsinβ)+eq\f(sinβ-θ,sinβsinθ)+eq\f(sinθ-α,sinθsinα).活動:本題是直接利用公式把兩角的和、差化為兩單角的三角函數(shù)的形式,教師可以先讓學(xué)生自己獨立地探究,然后進(jìn)行講評.解:原式=eq\f(sinαcosβ-cosαsinβ,sinαsinβ)+eq\f(sinβcosθ-cosβsinθ,sinβsinθ)+eq\f(sinθcosα-cosθsinα,sinθsinα)=eq\f(sinαcosβsinθ-cosαsinβsinθ,sinαsinβsinθ)+eq\f(sinαsinβcosθ-sinαcosβsinθ,sinαsinβsinθ)+eq\f(sinθsinβcosα-cosθsinβsinα,sinθsinβsinα)=eq\f(0,sinθsinβsinα)=0.點評:本題是一個很好的運用公式進(jìn)行化簡的例子,通過學(xué)生獨立解答,培養(yǎng)學(xué)生熟練運用公式的運算能力.變式訓(xùn)練化簡eq\f(sinα+β-2sinαcosβ,2sinαsinβ+cosα+β).解:原式=eq\f(sinαcosβ+cosαsinβ-2sinαcosβ,2sinαsinβ+cosαcosβ-sinαsinβ)=eq\f(cosαsinβ-sinαcosβ,sinαsinβ+cosαcosβ)=eq\f(sinβ-α,cosβ-α)=tan(β-α).eq\b\lc\\rc\(\a\vs4\al\co1(知能訓(xùn)練))課本本節(jié)練習(xí)1~4.1.(1)eq\f(\r(6)-\r(2),4),(2)eq\f(\r(6)-\r(2),4),(3)eq\f(\r(6)+\r(2),4),(4)2-eq\r(3).2.eq\f(4-3\r(3),10).3.eq\f(12-5\r(3),26).4.-2.eq\b\lc\\rc\(\a\vs4\al\co1(作業(yè)))已知0<β<eq\f(π,4),eq\f(π,4)<α<eq\f(3π,4),cos(eq\f(π,4)-α)=eq\f(3,5),sin(eq\f(3π,4)+β)=eq\f(5,13),求sin(α+β)的值.解:∵eq\f(π,4)<α<eq\f(3π,4),∴-eq\f(π,2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論