江蘇省揚州市教院2024屆數(shù)學九年級第一學期期末綜合測試試題含解析_第1頁
江蘇省揚州市教院2024屆數(shù)學九年級第一學期期末綜合測試試題含解析_第2頁
江蘇省揚州市教院2024屆數(shù)學九年級第一學期期末綜合測試試題含解析_第3頁
江蘇省揚州市教院2024屆數(shù)學九年級第一學期期末綜合測試試題含解析_第4頁
江蘇省揚州市教院2024屆數(shù)學九年級第一學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省揚州市教院2024屆數(shù)學九年級第一學期期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,⊙O外接于△ABC,AD為⊙O的直徑,∠ABC=30°,則∠CAD=()A.30° B.40° C.50° D.60°2.如圖,在△ABC中,DE∥BC,若DE=2,BC=6,則=()A. B. C. D.3.如圖,在半徑為1的⊙O中,直徑AB把⊙O分成上、下兩個半圓,點C是上半圓上一個動點(C與點A、B不重合),過點C作弦CD⊥AB,垂足為E,∠OCD的平分線交⊙O于點P,設CE=x,AP=y(tǒng),下列圖象中,最能刻畫y與x的函數(shù)關系的圖象是()A. B.C. D.4.已知反比例函數(shù)的圖象經(jīng)過點(m,3m),則此反比例函數(shù)的圖象在()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限5.已知拋物線與軸沒有交點,那么該拋物線的頂點所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.二次函數(shù)的圖象可以由二次函數(shù)的圖象平移而得到,下列平移正確的是()A.先向右平移2個單位,再向上平移1個單位B.先向右平移2個單位,再向下平移1個單位C.先向左平移2個單位,再向上平移1個單位D.先向左平移2個單位,再向下平移1個單位7.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,則AC=()A.3sin40°B.3sin50°8.已知方程的兩根為,則的值為()A.-1 B.1 C.2 D.09.一元二次方程的根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷10.如圖,l1∥l2∥l3,直線a,b與l1、l2、l3分別相交于A、B、C和點D、E、F.若,DE=4,則EF的長是()A. B. C.6 D.1011.下面四組圖形中,必是相似三角形的為()A.兩個直角三角形B.兩條邊對應成比例,一個對應角相等的兩個三角形C.有一個角為40°的兩個等腰三角形D.有一個角為100°的兩個等腰三角形12.下列手機手勢解鎖圖案中,是中心對稱圖形的是(

)A. B. C. D.二、填空題(每題4分,共24分)13.如圖,用一段長為30米的籬笆圍成一個一邊靠墻(墻的長度不限)的矩形菜園ABCD,設AB的長為x米,則菜園的面積y(平方米)與x(米)的函數(shù)表達式為________.(不要求寫出自變量x的取值范圍)14.如圖,△ABC內(nèi)接于⊙O,∠ACB=35o,則∠OAB=o.15.四邊形ABCD與四邊形位似,點O為位似中心.若,則________.16.一個圓錐的底面圓的半徑為3,母線長為9,則該圓錐的側面積為__________.17.已知直線:交x軸于點A,交y軸于點B;直線:經(jīng)過點B,交x軸于點C,過點D(0,-1)的直線分別交、于點E、F,若△BDE與△BDF的面積相等,則k=____.18.如圖,CD是的直徑,E為上一點,,A為DC延長線上一點,AE交于點B,且,則的度數(shù)為__________.

三、解答題(共78分)19.(8分)如圖,為⊙的直徑,為⊙上一點,為的中點.過點作直線的垂線,垂足為,連接.(1)求證:;(2)與⊙有怎樣的位置關系?請說明理由.20.(8分)如圖,在直角坐標系中,拋物線y=ax2+bx-2與x軸交于點A(-3,0)、B(1,0),與y軸交于點C.(1)求拋物線的函數(shù)表達式.(2)在拋物線上是否存在點D,使得△ABD的面積等于△ABC的面積的倍?若存在,求出點D的坐標;若不存在,請說明理由.(3)若點E是以點C為圓心且1為半徑的圓上的動點,點F是AE的中點,請直接寫出線段OF的最大值和最小值.21.(8分)解方程組:22.(10分)在正方形中,點是邊上一點,連接.圖1圖2(1)如圖1,點為的中點,連接.已知,,求的長;(2)如圖2,過點作的垂線交于點,交的延長線于點,點為對角線的中點,連接并延長交于點,求證:.23.(10分)某學校的學生為了對小雁塔有基本的認識,在老師的帶領下對小雁塔進行了測量.測量方法如下:如圖,間接測得小雁塔地部點D到地面上一點E的距離為115.2米,小雁塔的頂端為點B,且BD⊥DE,在點E處豎直放一個木棒,其頂端為C,CE=1.72米,在DE的延長線上找一點A,使A、C、B三點在同一直線上,測得AE=4.8米.求小雁塔的高度.24.(10分)如圖,,平分,過點作交于,連接交于,若,,求,的長.25.(12分)不透明的袋中有四個小球,分別標有數(shù)字1、2、3、4,它們除了數(shù)字外都相同。第一次從中摸出一個小球,記錄數(shù)字后放回袋中,第二次搖勻后再隨機摸出一個小球.(1)求第一次摸出的小球所標數(shù)字是偶數(shù)的概率;(2)求兩次摸出的小球所標數(shù)字相同的概率.26.(如圖1,若拋物線l1的頂點A在拋物線l2上,拋物線l2的頂點B也在拋物線l1上(點A與點B不重合).我們稱拋物線l1,l2互為“友好”拋物線,一條拋物線的“友好”拋物線可以有多條.(1)如圖2,拋物線l3:與y軸交于點C,點D與點C關于拋物線的對稱軸對稱,則點D的坐標為;(2)求以點D為頂點的l3的“友好”拋物線l4的表達式,并指出l3與l4中y同時隨x增大而增大的自變量的取值范圍;(3)若拋物線y=a1(x-m)2+n的任意一條“友好”拋物線的表達式為y=a2(x-h(huán))2+k,寫出a1與a2的關系式,并說明理由.

參考答案一、選擇題(每題4分,共48分)1、D【分析】首先由∠ABC=30°,推出∠ADC=30°,然后根據(jù)AD為⊙O的直徑,推出∠DCA=90°,最后根據(jù)直角三角形的性質(zhì)即可推出∠CAD=90°-∠ADC,通過計算即可求出結果.【題目詳解】解:∵∠ABC=30°,∴∠ADC=30°,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠CAD=90°-30°=60°.故選D.【題目點撥】本題主要考查圓周角定理,直角三角形的性質(zhì),角的計算,關鍵在于通過相關的性質(zhì)定理推出∠ADC和∠DCA的度數(shù).2、D【解題分析】由DE∥BC知△ADE∽△ABC,然后根據(jù)相似比求解.【題目詳解】解:∵DE∥BC

∴△ADE∽△ABC.又因為DE=2,BC=6,可得相似比為1:3.即==.故選D.【題目點撥】本題主要是先證明兩三角形相似,再根據(jù)已給的線段求相似比即可.3、A【分析】連接OP,根據(jù)條件可判斷出PO⊥AB,即AP是定值,與x的大小無關,所以是平行于x軸的線段.要注意CE的長度是小于1而大于0的.【題目詳解】連接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y(tǒng)=(0<x<1).故選A.【題目點撥】解決有關動點問題的函數(shù)圖象類習題時,關鍵是要根據(jù)條件找到所給的兩個變量之間的函數(shù)關系,尤其是在幾何問題中,更要注意基本性質(zhì)的掌握和靈活運用.4、B【題目詳解】解:將點(m,3m)代入反比例函數(shù)得,k=m?3m=3m2>0;故函數(shù)在第一、三象限,故選B.5、D【分析】根據(jù)題目信息可知當y=0時,,此時,可以求出a的取值范圍,從而可以確定拋物線頂點坐標的符號,繼而可以確定頂點所在的象限.【題目詳解】解:∵拋物線與軸沒有交點,∴時無實數(shù)根;即,,解得,,又∵的頂點的橫坐標為:;縱坐標為:;故拋物線的頂點在第四象限.故答案為:D.【題目點撥】本題考查的知識點是拋物線與坐標軸的交點問題,解題的關鍵是根據(jù)拋物線與x軸無交點得出時無實數(shù)根,再利用根的判別式求解a的取值范圍.6、C【解題分析】二次函數(shù)平移都是通過頂點式體現(xiàn),將轉化為頂點式,與原式對比,利用口訣左加右減,上加下減,即可得到答案【題目詳解】解:∵,∴的圖形是由的圖形,向左平移2個單位,然后向上平移1個單位【題目點撥】本題主要考查二次函數(shù)圖形的平移問題,學生熟練掌握左加右減,上加下減即可解決這類題目7、D【解題分析】試題分析:∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,tanB=ACBC故選D.考點:1.直角三角形兩銳角的關系;2.銳角三角函數(shù)定義.8、D【分析】先根據(jù)一元二次方程的解的定義得到a2-a-1=1,即a2-a=1,則a2-2a-b可化簡為a2-a-a-b,再根據(jù)根與系數(shù)的關系得a+b=1,ab=-1,然后利用整體代入的方法計算.【題目詳解】解:∵a是方程的實數(shù)根,

∴a2-a-1=1,

∴a2-a=1,

∴a2-2a-b=a2-a-a-b=(a2-a)-(a+b),

∵a、b是方程的兩個實數(shù)根,

∴a+b=1,

∴a2-2a-b=1-1=1.

故選D.【題目點撥】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,x1+x2=,x1?x2=.9、A【分析】把a=1,b=-1,c=-1,代入,然后計算,最后根據(jù)計算結果判斷方程根的情況.【題目詳解】方程有兩個不相等的實數(shù)根.故選A.【題目點撥】本題考查根的判別式,把a=1,b=-1,c=-1,代入計算是解題的突破口.10、C【分析】根據(jù)平行線分線段成比例可得,代入計算即可解答.【題目詳解】解:∵l1∥l2∥l3,∴,即,解得:EF=1.故選:C.【題目點撥】本題主要考查平行線分線段成比例定理,熟悉定理是解題的關鍵.11、D【分析】根據(jù)等腰三角形的性質(zhì)、直角三角形的性質(zhì)和相似三角形的判定方法即可判定.【題目詳解】解:兩個直角三角形不一定相似,因為只有一個直角相等,∴A不一定相似;兩條邊對應成比例,一個對應角相等的兩個三角形不一定相似,因為這個對應角不一定是夾角;∴B不一定相似;有一個角為40°的兩個等腰三角形不一定相似,因為40°的角可能是頂角,也可能是底角,∴C不一定相似;有一個角為100°的兩個等腰三角形一定相似,因為100°的角只能是頂角,所以兩個等腰三角形的頂角和底角分別相等,∴D一定相似;故選:D.【題目點撥】本題考查了等腰三角形和直角三角形的性質(zhì)以及相似三角形的判定,屬于基礎題型,熟練掌握相似三角形的判定方法是關鍵.12、B【分析】根據(jù)中心對稱圖形的概念判斷即可.【題目詳解】A.不是中心對稱圖形;B.是中心對稱圖形;C.不是中心對稱圖形;D.不是中心對稱圖形.故選B.【題目點撥】本題考查了中心對稱圖的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(每題4分,共24分)13、y=-x2+15x【分析】由AB邊長為x米,根據(jù)已知可以推出BC=(30-x),然后根據(jù)矩形的面積公式即可求出函數(shù)關系式.【題目詳解】∵AB邊長為x米,而菜園ABCD是矩形菜園,∴BC=(30-x),菜園的面積=AB×BC=(30-x)?x,則菜園的面積y(單位:米2)與x(單位:米)的函數(shù)關系式為:y=-x2+15x,故答案為y=-x2+15x.【題目點撥】本題考查了二次函數(shù)的應用,正確分析,找準各量間的數(shù)量關系列出函數(shù)關系式是解題的關鍵.14、55【解題分析】分析:∵∠ACB與∠AOB是所對的圓周角和圓心角,∠ACB=35o,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.15、1∶3【解題分析】根據(jù)四邊形ABCD與四邊形位似,,可知位似比為1:3,即可得相似比為1:3,即可得答案.【題目詳解】∵四邊形與四邊形位似,點為位似中心.,∴四邊形與四邊形的位似比是1∶3,∴四邊形與四邊形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案為1∶3.【題目點撥】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.16、【分析】先求出底面圓的周長,然后根據(jù)扇形的面積公式:即可求出該圓錐的側面積.【題目詳解】解:底面圓的周長為,即圓錐的側面展開后的弧長為,∵母線長為9,∴圓錐的側面展開后的半徑為9,∴圓錐的側面積故答案為:【題目點撥】此題考查的是求圓錐的側面積,掌握扇形的面積公式:是解決此題的關鍵.17、【分析】先利用一次函數(shù)圖像相關求出A、B、C的坐標,再根據(jù)△BDE與△BDF的面積相等,得到點E、F的橫坐標相等,從而進行分析即可.【題目詳解】解:由直線:交x軸于點A,交y軸于點B;直線:經(jīng)過點B,交x軸于點C,求出A、B、C的坐標分別為,將點D(0,-1)代入得到,又△BDE與△BDF的面積相等,即知點E、F的橫坐標相等,且直線分別交、于點E、F,可知點E、F為關于原點對稱,即知坡度為45°,斜率為.故k=.【題目點撥】本題考查一次函數(shù)圖像性質(zhì)與幾何圖形的綜合問題,熟練掌握一次函數(shù)圖像性質(zhì)以及等面積三角形等底等高的概念進行分析是解題關鍵.18、16°【分析】連接OB,根據(jù),可得,設∠A=x,則∠AOB=x,列方程求出x的值即可.【題目詳解】連接OB設∠A=x,則∠AOB=x即∠A的度數(shù)為16°故答案為:16°.【題目點撥】本題考查了圓的角度問題,掌握等邊對等角、三角形外角定理是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2)與⊙相切,理由見解析.【分析】(1)連接,由為的中點,得到,根據(jù)圓周角定理即可得到結論;(2)根據(jù)平行線的判定定理得到,根據(jù)平行線的性質(zhì)得到于是得到結論.【題目詳解】(1)連接,為的中點,∴,,,;(2)與⊙相切,理由如下:,,∴∠ODE+∠E=180°,,∴∠E=90°,∴∠ODE=90°,,又∵OD是半徑,與⊙相切.【題目點撥】本題考查了直線與圓的位置關系,圓心角、弧、弦的關系,圓周角定理,熟練掌握切線的判定定理是解題的關鍵.20、(1);(2)存在,理由見解析;D(-4,)或(2,);(3)最大值;最小值【分析】(1)將點A、B的坐標代入函數(shù)解析式計算即可得到;(2)點D應在x軸的上方或下方,在下方時通過計算得△ABD的面積是△ABC面積的倍,判斷點D應在x軸的上方,設設D(m,n),根據(jù)面積關系求出m、n的值即可得到點D的坐標;(3)設E(x,y),由點E是以點C為圓心且1為半徑的圓上的動點,用兩點間的距離公式得到點E的坐標為E,再根據(jù)點F是AE中點表示出點F的坐標,再設設F(m,n),再利用m、n、與x的關系得到n=,通過計算整理得出,由此得出F點的軌跡是以為圓心,以為半徑的圓,再計算最大值與最小值即可.【題目詳解】解:(1)將點A(-3,0)、B(1,0)代入y=ax2+bx-2中,得,解得,∴(2)若D在x軸的下方,當D為拋物線頂點(-1,)時,,△ABD的面積是△ABC面積的倍,,所以D點一定在x軸上方.設D(m,n),△ABD的面積是△ABC面積的倍,n==m=-4或m=2D(-4,)或(2,)(3)設E(x,y),∵點E是以點C為圓心且1為半徑的圓上的動點,∴,∴y=,∴E,∵F是AE的中點,∴F的坐標,設F(m,n),∴m=,n=,∴x=2m+3,∴n=,∴2n+2=,∴(2n+2)2=1-(2m+3)2,∴4(n+1)2+4()2=1,∴,∴F點的軌跡是以為圓心,以為半徑的圓,∴最大值:,最小值:最大值;最小值【題目點撥】此題是二次函數(shù)的綜合題,考察待定系數(shù)法解函數(shù)關系式,圖像中利用三角形面積求點的坐標,注意應分x軸上下兩種情況,(3)還考查了兩點間的中點坐標的求法,兩點間的距離的確定方法:兩點間的距離的平方=橫坐標差的平方+縱坐標差的平方.21、.【分析】根據(jù)加減消元法即可求解.【題目詳解】解:得:.解得:代入①,解得:所以,原方程組的解為【題目點撥】此題主要考查二元一次方程組的求解,解題的關鍵是熟知加減消元法的運用.22、(1);(2)證明見解析.【分析】(1)作于點,由直角三角形斜邊上的中線等于斜邊的一半可推出,,在中,利用三角函數(shù)求出BP,F(xiàn)P,在等腰三角形中,求出BE,再由勾股定理求出AB,進而得到BC和CP,再次利用勾股定理即可求出CF的長度.(2)過作垂直于點,得矩形,首先證明,得,再證明,可推出得.【題目詳解】解:(1)中,為中線,,,.作于點,如圖,中,在等腰三角形中,,由勾股定理求得,(2)過作垂直于點,得矩形,∵AB∥CD∴∠MAO=∠GCO在△AMO和△CGO中,∵∠MAO=∠GCO,AO=CO,∠AOM=∠COG∴△AMO≌△CGO(ASA)∴AM=GC∵四邊形BCGP為矩形,∴GC=PB,PG=BC=AB∵AE⊥HG∴∠H+∠BAE=90°又∵∠AEB+∠BAE=90°∴∠AEB=∠H在△ABE和△GPH中,∵∠AEB=∠H,∠ABE=∠GPH=90°,AB=PG∴△ABE≌△GPH(AAS)∴BE=PH又∵CG=PB=AM∴BE=PH=PB+BH=CG+BH=AM+BH即AM+BH=BE.【題目點撥】本題考查了正方形和矩形的性質(zhì),三角函數(shù),勾股定理,以及全等三角形的判定和性質(zhì),正確作出輔助線,利用全等三角形對應邊相等將線段進行轉化是解題的關鍵.23、43m.【解題分析】直接利用相似三角形的判定與性質(zhì)得出,進而得出答案.【題目詳解】解由題意可得△AEC∽△ADB,則=,故=,解得DB=43,答:小雁塔的高度為43m.【題目點撥】本題考查了相似三角形的判定與性質(zhì),正確得出△AEC∽△ADB是解題的關鍵.24、BD=,DN=【分析】由平行線的性質(zhì)可證∠MBD=∠BDC,即可證AM=MD=MB=4,由BD2=AD?CD可得BD長,再由勾股定理可求MC的長,通過證明△MNB∽△CND,可得,即可求DN的長.【題目詳解】解:∵BM∥CD

∴∠MBD=∠BDC

∴∠ADB=∠MBD,且∠ABD=90°

∴BM=MD,∠MAB=∠MBA

∴BM=MD=AM=4∵平分,∴∠ADB=∠CDB,∵,∴△ABD∽△BCD,

∴BD2=AD?CD,∵CD=6,AD=8,

∴BD2=48,即BD=,

∴BC2=BD2-CD2=12

∴MC2=MB2+BC2=28

∴MC=,∵BM∥CD

∴△MNB∽△CND,∴,且BD=,∴設DN=x,則有,解得x=,即DN=.【題目點撥】本題考查了相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論