廣西防城港市防城區(qū)2024屆九年級數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
廣西防城港市防城區(qū)2024屆九年級數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
廣西防城港市防城區(qū)2024屆九年級數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
廣西防城港市防城區(qū)2024屆九年級數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
廣西防城港市防城區(qū)2024屆九年級數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西防城港市防城區(qū)2024屆九年級數(shù)學(xué)第一學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.反比例函數(shù)的圖像經(jīng)過點,,則下列關(guān)系正確的是()A. B. C. D.不能確定2.如圖,以AB為直徑,點O為圓心的半圓經(jīng)過點C,若AC=BC=,則圖中陰影部分的面積是()A. B. C. D.3.某射擊運動員在訓(xùn)練中射擊了10次,成績?nèi)鐖D所示:下列結(jié)論不正確的是()A.眾數(shù)是8 B.中位數(shù)是8 C.平均數(shù)是8.2 D.方差是1.24.在六張卡片上分別寫有,π,1.5,5,0,六個數(shù),從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率是()A. B. C. D.5.已知,則下列各式不成立的是()A. B. C. D.6.一元二次方程的解為()A., B. C. D.,7.如圖,從點看一山坡上的電線桿,觀測點的仰角是45°,向前走到達點,測得頂端點和桿底端點的仰角分別是60°和30°,則該電線桿的高度()A. B. C. D.8.sin30°的值為()A. B. C. D.9.下列方程中,是一元二次方程的是()A. B.C. D.10.如圖,把繞點逆時針旋轉(zhuǎn),得到,點恰好落在邊上的點處,連接,則的度數(shù)為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在四邊形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,則四邊形ABCD的面積為__.12.如圖,已知AB⊥BD,ED⊥BD,C是線段BD的中點,且AC⊥CE,ED=1,BD=4,那么AB=.13.順次連接矩形各邊中點所得四邊形為_____.14.若二次函數(shù)的對稱軸為直線,則關(guān)于的方程的解為______.15.已知反比例函數(shù),當時,隨的增大而增大,則的取值范圍為_______.16.如圖,矩形的面積為,它的對角線與雙曲線相交于點,且,則________.17.如圖,直線分別交軸,軸于點A和點B,點C是反比例函數(shù)的圖象上位于直線下方的一點,CD∥軸交AB于點D,CE∥軸交AB于點E,,則的值為______18.如圖,在中,點在邊上,連接并延長交的延長線于點,若,則__________.三、解答題(共66分)19.(10分)如圖,在中,,垂足為平分,交于點,交于點.(1)若,求的長;(2)過點作的垂線,垂足為,連接,試判斷四邊形的形狀,并說明原因.20.(6分)如圖,大圓的弦AB、AC分別切小圓于點M、N.(1)求證:AB=AC;(2)若AB=8,求圓環(huán)的面積.21.(6分)如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點D.連接AD,BD.求四邊形ABCD的面積.22.(8分)如圖,已知是的直徑,點是延長線上一點過點作的切線,切點為.過點作于點,延長交于點.連結(jié),,,.若,.(1)求的長。(2)求證:是的切線.(3)試判斷四邊形的形狀,并求出四邊形的面積.23.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.24.(8分)(1)解方程:;(2)計算:.25.(10分)如圖,已知反比例函數(shù)與一次函數(shù)的圖象相交于點A、點D,且點A的橫坐標為1,點D的縱坐標為-1,過點A作AB⊥x軸于點B,△AOB的面積為1.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)若一次函數(shù)y=ax+b的圖像與x軸交于點C,求∠ACO的度數(shù).(3)結(jié)合圖像直接寫出,當時,x的取值范圍.26.(10分)在綜合實踐課中,小慧將一張長方形卡紙如圖1所示裁剪開,無縫隙不重疊的拼成如圖2所示的“”形狀,且成軸對稱圖形.裁剪過程中卡紙的消耗忽略不計,若已知,,.求(1)線段與的差值是___(2)的長度.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)點的橫坐標結(jié)合反比例函數(shù)圖象上點的坐標特征即可求出y1、y2的值,比較后即可得出結(jié)論.【題目詳解】解:∵反比例函數(shù)的圖象經(jīng)過點,,

∴y1=3,y2=,

∵3>,

∴.

故選:B.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征,根據(jù)點的橫坐標利用反比例函數(shù)圖象上點的坐標特征求出點的縱坐標是解題的關(guān)鍵.2、A【分析】先利用圓周角定理得到∠ACB=90°,則可判斷△ACB為等腰直角三角形,接著判斷△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根據(jù)扇形的面積公式計算圖中陰影部分的面積.【題目詳解】∵AB為直徑,∴∠ACB=90°,∵AC=BC=,∴△ACB為等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S陰影部分=S扇形AOC=.故選A.【題目點撥】本題考查了扇形面積的計算:圓面積公式:S=πr2,(2)扇形:由組成圓心角的兩條半徑和圓心角所對的弧所圍成的圖形叫做扇形.求陰影面積常用的方法:①直接用公式法;②和差法;③割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.3、D【分析】首先根據(jù)圖形數(shù)出各環(huán)數(shù)出現(xiàn)的次數(shù),在進行計算眾數(shù)、中位數(shù)、平均數(shù)、方差.【題目詳解】根據(jù)圖表可得10環(huán)的2次,9環(huán)的2次,8環(huán)的3次,7環(huán)的2次,6環(huán)的1次.所以可得眾數(shù)是8,中位數(shù)是8,平均數(shù)是方差是故選D【題目點撥】本題主要考查統(tǒng)計的基本知識,關(guān)鍵在于眾數(shù)、中位數(shù)、平均數(shù)和方差的概念.特別是方差的公式.4、B【解題分析】無限不循環(huán)小數(shù)叫無理數(shù),無理數(shù)通常有以下三種形式:一是開方開不盡的數(shù),二是圓周率π,三是構(gòu)造的一些不循環(huán)的數(shù),如1.010010001……(兩個1之間0的個數(shù)一次多一個).然后用無理數(shù)的個數(shù)除以所有書的個數(shù),即可求出從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率.【題目詳解】∵這組數(shù)中無理數(shù)有,共2個,∴卡片上的數(shù)為無理數(shù)的概率是.故選B.【題目點撥】本題考查了無理數(shù)的定義及概率的計算.5、D【分析】利用比例的性質(zhì)進行逐一變形,比較是否與題目一致,即可得出答案.【題目詳解】A:因為所以ab=cd,故A正確;B:因為所以ab=cd,故B正確;C:因為所以(a+c)b=(d+b)c,化簡得ab=cd,故選項C正確;D:因為所以(a+1)(b+1)=(d+1)(c+1),化簡得ab+a+b=cd+d+c,故選項D錯誤;故答案選擇D.【題目點撥】本題考查的是比例的性質(zhì),難度不大,需要熟練掌握相關(guān)基礎(chǔ)知識,重點需要熟練掌握去括號法則.6、A【分析】根據(jù)因式分解法中的提取公因式法進行求解即可;【題目詳解】故選A.【題目點撥】本題主要考查了一元二次方程因式分解法中的提取公因式法,準確計算是解題的關(guān)鍵.7、A【分析】延長PQ交直線AB于點E,設(shè)PE=x米,在直角△APE和直角△BPE中,根據(jù)三角函數(shù)利用x表示出AE和BE,根據(jù)AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函數(shù)求得QE的長,則PQ的長度即可求解.【題目詳解】解:延長PQ交直線AB于點E,設(shè)PE=x.

在直角△APE中,∠PAE=45°,

則AE=PE=x;

∵∠PBE=60°

∴∠BPE=30°

在直角△BPE中,,∵AB=AE-BE=6,則解得:∴在直角△BEQ中,故選:A【題目點撥】本題考查解直角三角形的應(yīng)用-仰角俯角問題,解答本題的關(guān)鍵是明確題意,利用銳角三角函數(shù)和數(shù)形結(jié)合的思想解答.8、C【分析】直接利用特殊角的三角函數(shù)值求出答案.【題目詳解】解:sin30°=故選C【題目點撥】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)特殊角的三角函數(shù)值是解題關(guān)鍵.9、B【解題分析】根據(jù)一元二次方程的定義進行判斷即可.【題目詳解】A.屬于多項式,錯誤;B.屬于一元二次方程,正確;C.未知數(shù)項的最高次數(shù)是2,但不屬于整式方程,錯誤;D.屬于整式方程,未知數(shù)項的最高次數(shù)是3,錯誤.故答案為:B.【題目點撥】本題考查了一元二次方程的性質(zhì)以及定義,掌握一元二次方程的定義是解題的關(guān)鍵.10、D【分析】由旋轉(zhuǎn)的性質(zhì)可得AB'=AB,∠BAB'=50°,由等腰三角形的性質(zhì)可得∠AB'B=∠ABB'=65°.【題目詳解】解:∵Rt△ABC繞點A逆時針旋轉(zhuǎn)50°得到Rt△AB′C′,

∴AB'=AB,∠BAB'=50°,∴,故選:D.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.二、填空題(每小題3分,共24分)11、16【分析】延長AB至點E,使BE=DA,連接CE,作CF⊥AB于F,證明△CDA≌△CBE,根據(jù)全等三角形的性質(zhì)得到CA=CE,∠BCE=∠DCA,得到△CAE為等邊三角形,根據(jù)等邊三角形的性質(zhì)計算,得到答案.【題目詳解】延長AB至點E,使BE=DA,連接CE,作CF⊥AB于F,∵∠DAB+∠DCB=120°+60°=180°,∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,∴∠CDA=∠CBE,在△CDA和△CBE中,,∴△CDA≌△CBE(SAS)∴CA=CE,∠BCE=∠DCA,∵∠DCB=60°,∴∠ACE=60°,∴△CAE為等邊三角形,∴AE=AC=8,CF=AC=4,則四邊形ABCD的面積=△CAB的面積=×8×4=16,故答案為:16.【題目點撥】考核知識點:等邊三角形判定和性質(zhì),三角函數(shù).作輔助線,構(gòu)造直角三角形是關(guān)鍵.12、4【解題分析】∵AB⊥BD,ED⊥BD∴∠B=∠D=90°,∠A+∠ACB=90°∵AC⊥CE,即∠ECD+∠ACB=90°∴∠A=∠ECD∴△ABC∽△CDE∴∴AB=413、菱形【題目詳解】解:如圖,連接AC、BD,∵E、F、G、H分別是矩形ABCD的AB、BC、CD、AD邊上的中點,∴EF=GH=AC,F(xiàn)G=EH=BD(三角形的中位線等于第三邊的一半),∵矩形ABCD的對角線AC=BD,∴EF=GH=FG=EH,∴四邊形EFGH是菱形.故答案為菱形.考點:三角形中位線定理;菱形的判定;矩形的性質(zhì).14、,【分析】根據(jù)對稱軸方程求得b,再代入解一元二次方程即可.【題目詳解】解:∵二次函數(shù)y=x2+bx-5的對稱軸為直線x=1,∴=1,即b=-2∴解得:,故答案為,.【題目點撥】本題主要考查的是拋物線與x軸的交點、一元二次方程等知識,根據(jù)拋物線的對稱軸確定b的值是解答本題的關(guān)鍵.15、m>1【分析】根據(jù)反比例函數(shù),如果當x>0時,y隨自變量x的增大而增大,可以得到1-m<0,從而可以解答本題.【題目詳解】解:∵反比例函數(shù),當x>0時,y隨x的增大而增大,∴1-m<0,

解得,m>1,

故答案為:m>1.【題目點撥】本題考查反比例函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.16、12【解題分析】試題分析:由題意,設(shè)點D的坐標為(x,y),則點B的坐標為(,),所以矩形OABC的面積,解得∵圖象在第一象限,∴.考點:反比例系數(shù)k的幾何意義點評:反比例系數(shù)k的幾何意義是初中數(shù)學(xué)的重點,是中考常見題,一般難度不大,需熟練掌握.17、【分析】過作于,過作于,由CD∥軸,CE∥軸,得利用三角形相似的性質(zhì)求解建立方程求解,結(jié)合的幾何意義可得答案.【題目詳解】.解:過作于,過作于,CD∥軸,CE∥軸,直線分別交軸,軸于點A和點B,點,把代入得:同理:把代入得:,同理:故答案為;.【題目點撥】本題考查的是反比例函數(shù)的系數(shù)的幾何意義,同時考查了一次函數(shù)的性質(zhì),勾股定理的應(yīng)用,相似三角形的判定與性質(zhì),掌握以上知識是解題的關(guān)鍵.18、【分析】根據(jù)相似三角形的判定與性質(zhì)、平行四邊形的性質(zhì),進而證明,得出線段的比例,即可得出答案【題目詳解】在中,∴AD∥BC,∠DAE=∠CFE,∠ADE=∠FCE,∴△ADE∽△FCE∵DE=2EC,∴AD=2CF,在中,∵AD=BC,等量代換得:BC=2CF∴2:1【題目點撥】本題考查了相似三角形的判定與性質(zhì)以及平行四邊形的性質(zhì),數(shù)形結(jié)合是解題的關(guān)鍵.三、解答題(共66分)19、(1)CE=2;(2)菱形,理由見解析.【分析】(1)根據(jù)題意易求得∠ACD=∠CAF=∠BAF=30°,可得AE=CE,然后利用30°角的三角函數(shù)可求得CD的長、DE與AE的關(guān)系,進一步可得CE與CD的關(guān)系,進而可得結(jié)果;(2)根據(jù)角平分線的性質(zhì)可得CF=GF,根據(jù)HL可證Rt△ACF≌Rt△AGF,從而得∠AFC=∠AFG,由平行線的性質(zhì)和等量代換可得∠CEF=∠CFE,可得CE=CF,進而得CE=FG,根據(jù)一組對邊平行且相等可得四邊形CEGF是平行四邊形,進一步即得結(jié)論.【題目詳解】解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ACD=30°,∵AC=6,∴,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴∠ACD=∠CAF,,∴CE=AE=2DE,∴CE=2;(2)四邊形CEGF是菱形.證明:∵FG⊥AB,F(xiàn)C⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF與Rt△AGF中,∵AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,F(xiàn)G⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∵CE∥FG,∴四邊形CEGF是平行四邊形,∵CE=CF,∴平行四邊形CEGF是菱形.【題目點撥】本題考查了直角三角形的性質(zhì)、角平分線的性質(zhì)、銳角三角函數(shù)、菱形的判定和直角三角形全等的判定和性質(zhì)等知識,屬于??碱}型,熟練掌握上述基本知識是解題的關(guān)鍵.20、(1)證明見解析;(2)S圓環(huán)=16π【解題分析】試題分析:(1)連結(jié)OM、ON、OA由切線長定理可得AM=AN,由垂徑定理可得AM=BM,AN=NC,從而可得AB=AC.(2)由垂徑定理可得AM=BM=4,由勾股定理得OA2-OM2=AM2=16,代入圓環(huán)的面積公式求解即可.(1)證明:連結(jié)OM、ON、OA∵AB、AC分別切小圓于點M、N.∴AM=AN,OM⊥AB,ON⊥AC,∴AM=BM,AN=NC,∴AB=AC(2)解:∵弦AB切與小圓⊙O相切于點M∴OM⊥AB∴AM=BM=4∴在Rt△AOM中,OA2-OM2=AM2=16∴S圓環(huán)=πOA2-πOM2=πAM2=16π21、S四邊形ADBC=49(cm2).【分析】根據(jù)直徑所對的角是90°,判斷出△ABC和△ABD是直角三角形,根據(jù)圓周角∠ACB的平分線交⊙O于D,判斷出△ADB為等腰直角三角形,根據(jù)勾股定理求出AD、BD、AC的值,再根據(jù)S四邊形ADBC=S△ABD+S△ABC進行計算即可.【題目詳解】∵AB為直徑,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,則AD=BD=5,則S△ABD=AD?BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),則S△ABC=AC?BC=×6×8=24(cm2),則S四邊形ADBC=S△ABD+S△ABC=25+24=49(cm2).【題目點撥】本題考查了圓周角定理、三角形的面積等,正確求出相關(guān)的數(shù)值是解題的關(guān)鍵.22、(1)BD=2;(2)見解析;(3)四邊形ABCD是菱形,理由見解析.菱形ABCD得面積為6.【分析】(1)根據(jù)題意連結(jié)BD,利用切線定理以及勾股定理進行分析求值;(2)根據(jù)題意連結(jié)OB,利用垂直平分線性質(zhì)以及切線定理進行分析求值;(3)由題意可知四邊形ABCD是菱形,結(jié)合勾股定理利用菱形的判定方法進行求證.【題目詳解】解:(1)連結(jié)BDDE=CE∴∠DCE=∠EDC∵⊙O與CD相切于點D,∴OD⊥DC,∠ODC=90°∠ODE+∠CDE=90°∠DOC+∠DCO=90°,∠DCE=∠EDC∠ODE=∠DOEDE=OE∵在⊙O中,OE=ODOE=OD=DE∠DOE=60°∵在⊙O中,AE⊥DBBD=2DF∵在Rt△COE中,∠ODF-90°-∠DOE=90°-60°=30°∴OD=2OF∵EF=1,設(shè)半徑為R,OF=OE-FE=R-1∴R=2(R-1),解得R=2∴BD=2DF=2(2)連結(jié)OB∵在⊙O中,AE⊥DBBF=DFAC是DB的垂直平分線∴OD=0B,CD=CB∴∠ODB=∠OBD,∠CDB=∠CBD∴∠ODB+∠CDB=∠OBD+∠CBD即∠ODC=∠OBC由(1)得∠ODC=90°∴∠OBC=90°即OB⊥BC又OB是⊙O的半徑∴CB是⊙O的切線(3)四邊形ABCD是菱形,理由如下∵由(1)得在⊙O中,∠DOE=60°,∠ODC=90°∴∠DAO=∠DOE=30°∵由(1)得∠ODC=90°∴∠OCD=90°-∠DOC=90°-60°=30°∴∠DAO=∠OCD∴DA=CD∵由(2)得AD=AB,CD=BC∴AD=DC=BC=AB∴四邊形ABCD是菱形∵在Rt△AFD中,DF=,∠DAC=30°∴AD=2DF=2∵四邊形ABCD是菱形∴AC=2AF=6,BD=2DF=2∴菱形ABCD得面積為:×AC×DB=×6×2=6.【題目點撥】本題考查切線的性質(zhì)、等邊三角形的判定和性質(zhì)、菱形的判定和性質(zhì)以及解直角三角形,熟練掌握并綜合利用其進行分析是解題關(guān)鍵.23、(1)(2).【分析】(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【題目詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.24、(1);(2)-3【分析】(1)先依次寫出a、b、c的值,再求出△的值,最后代入公式計算即可;(2)分別計算特殊角的三角函數(shù)值和算術(shù)平方根,再依據(jù)有理數(shù)的混合運算計算即可.【題目詳解】解:(1):∵∴,∴,∴,即(2)原式=,.【題目點撥】本題考查利用公式法解一元二次方程,特殊角的三角函數(shù)值的混合運算和算術(shù)平方根.(1)中熟記一元二次方程的求根公式是解題關(guān)鍵;(2)中熟記特殊角的三角函數(shù)值是解題關(guān)鍵.25、(1),;(2)∠ACO=45°;(3)0<<1,<-2【分析】(1)由△AOB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論