版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鹽城市響水實驗、一中學2024屆數(shù)學九年級第一學期期末學業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.下圖中,不是中心對稱圖形的是()A. B. C. D.2.如圖,在平面直角坐標系中,將繞點逆時針旋轉(zhuǎn)后,點對應點的坐標為()A. B. C. D.3.如圖,AD∥BE∥CF,AB=3,BC=6,DE=2,則EF的值為()A.2 B.3 C.4 D.54.把方程x(x+2)=5(x-2)化成一般式,則a、b、c的值分別是()A.1,-3,10 B.1,7,-10 C.1,-5,12 D.1,3,25.如圖,某水庫堤壩橫斷面迎水坡AB的坡比是1:,堤壩高BC=50m,則應水坡面AB的長度是()A.100m B.100m C.150m D.50m6.下列說法正確的是()A.“經(jīng)過有交通信號的路口遇到紅燈”是必然事件B.已知某籃球運動員投籃投中的概率為0.6,則他投10次一定可投中6次C.投擲一枚硬幣正面朝上是隨機事件D.明天太陽從東方升起是隨機事件7.如圖工人師傅砌門時,常用木條EF固定長方形門框ABCD,使其不變形,這樣做的根據(jù)是()A.兩點之間線段最短 B.兩點確定一條直線C.三角形具有穩(wěn)定性 D.長方形的四個角都是直角8.如圖,△ABC中,∠C=90°,AB=5,AC=4,且點D,E分別是AC,AB的中點,若作半徑為3的⊙C,則下列選項中的點在⊙C外的是()A.點B B.點D C.點E D.點A9.如圖,在矩形ABCD中,AB=12,P是AB上一點,將△PBC沿直線PC折疊,頂點B的對應點是G,過點B作BE⊥CG,垂足為E,且在AD上,BE交PC于點F,則下列結(jié)論,其中正確的結(jié)論有()①BP=BF;②若點E是AD的中點,那么△AEB≌△DEC;③當AD=25,且AE<DE時,則DE=16;④在③的條件下,可得sin∠PCB=;⑤當BP=9時,BE?EF=1.A.2個 B.3個 C.4個 D.5個10.《孫子算經(jīng)》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺,木長幾何?”譯文大致是:“用一根繩子去量一根木條,繩子剩余尺;將繩子對折再量木條,木條剩余尺,問木條長多少尺?”如果設木條長尺,繩子長尺,可列方程組為()A. B. C. D.11.二次函數(shù)的部分圖象如圖所示,圖象過點,對稱軸為.下列說法:①;②;③4;④若,是拋物線上兩點,則,錯誤的是()A.① B.② C.③ D.④12.數(shù)據(jù)4,3,5,3,6,3,4的眾數(shù)和中位數(shù)是()A.3,4 B.3,5 C.4,3 D.4,5二、填空題(每題4分,共24分)13.如圖,在⊙O中,弦AB,CD相交于點P,∠A=42°,∠APD=77°,則∠B=_____°.14.已知二次函數(shù)的圖象如圖所示,則下列四個代數(shù)式:①,②,③;④中,其值小于的有___________(填序號).15.甲、乙、丙三人站成一排合影留念,則甲、乙二人相鄰的概率是.16.如圖,∠AOB=90°,且OA、OB分別與反比例函數(shù)、的圖象交于A、B兩點,則tan∠OAB的值是______.17.四邊形ABCD中,對角線AC、BD相交于點O,給出下列四個條件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD從中任選兩個條件,能使四邊形ABCD為平行四邊形的選法有________種18.如圖,在Rt△ABC中∠B=50°,將△ABC繞直角頂點A順時針旋轉(zhuǎn)得到△ADE.當點C在B1C1邊所在直線上時旋轉(zhuǎn)角∠BAB1=____度.三、解答題(共78分)19.(8分)關于的一元二次方程有兩個不相等且非零的實數(shù)根,探究滿足的條件.小華根據(jù)學習函數(shù)的經(jīng)驗,認為可以從二次函數(shù)的角度研究一元二次方程的根的符號。下面是小華的探究過程:第一步:設一元二次方程對應的二次函數(shù)為;第二步:借助二次函數(shù)圖象,可以得到相應的一元二次方程中滿足的條件,列表如下表。方程兩根的情況對應的二次函數(shù)的大致圖象滿足的條件方程有兩個不相等的負實根①_______方程有兩個不相等的正實根②③____________(1)請將表格中①②③補充完整;(2)已知關于的方程,若方程的兩根都是正數(shù),求的取值范圍.20.(8分)如圖,一位同學想利用樹影測量樹高,他在某一時刻測得高為的竹竿影長為,但當他馬上測量樹影時,因樹靠近一幢建筑物,影子不全落在地面上,有一部分影子在墻上,他先測得留在墻上的影高,又測得地面部分的影長,則他測得的樹高應為多少米?21.(8分)如圖①,BC是⊙O的直徑,點A在⊙O上,AD⊥BC垂足為D,弧AE=弧AB,BE分別交AD、AC于點F、G.(1)判斷△FAG的形狀,并說明理由;(2)如圖②若點E與點A在直徑BC的兩側(cè),BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變(1)中的結(jié)論還成立嗎?請說明理由.(3)在(2)的條件下,若BG=26,DF=5,求⊙O的直徑BC.22.(10分)在平面直角坐標系中,己知,.點從點開始沿邊向點以的速度移動;點從點開始沿邊內(nèi)點以的速度移動.如果、同時出發(fā),用表示移動的時間.(1)用含的代數(shù)式表示:線段_______;______;(2)當為何值時,四邊形的面積為.(3)當與相似時,求出的值.23.(10分)如圖,在銳角三角形ABC中,AB=4,BC=,∠B=60°,求△ABC的面積24.(10分)已知:如圖,C,D是以AB為直徑的⊙O上的兩點,且OD∥BC.求證:AD=DC.25.(12分)端午節(jié)放假期間,小明和小華準備到巴馬的水晶宮(記為A)、百魔洞(記為B)、百鳥巖(記為C)、長壽村(記為D)的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點都被選中的可能性相同.(1)求小明選擇去百魔洞旅游的概率.(2)用樹狀圖或列表的方法求小明和小華都選擇去長壽村旅游的概率.26.如圖,在矩形ABCD中,AB=6,BC=13,BE=4,點F從點B出發(fā),在折線段BA﹣AD上運動,連接EF,當EF⊥BC時停止運動,過點E作EG⊥EF,交矩形的邊于點G,連接FG.設點F運動的路程為x,△EFG的面積為S.(1)當點F與點A重合時,點G恰好到達點D,此時x=,當EF⊥BC時,x=;(2)求S關于x的函數(shù)解析式,并直接寫出自變量x的取值范圍;(3)當S=15時,求此時x的值.
參考答案一、選擇題(每題4分,共48分)1、D【解題分析】根據(jù)把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形可得答案.【題目詳解】A、是中心對稱圖形,故此選項不合題意;
B、是中心對稱圖形,故此選項不合題意;
C、是中心對稱圖形,故此選項不合題意;
D、不是中心對稱圖形,故此選項符合題意;
故選:D.【題目點撥】考查了中心對稱圖形,關鍵是掌握中心對稱圖形定義.2、D【分析】根據(jù)旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀和大小作出旋轉(zhuǎn)后的圖形,即可得出答案.【題目詳解】如圖,△ABC繞點A逆時針旋轉(zhuǎn)90°后,B點對應點的坐標為(0,2),故答案選擇D.【題目點撥】本題考查的是坐標與圖形的變化——旋轉(zhuǎn),記住旋轉(zhuǎn)只改變圖形的位置不改變圖形的形狀和大小.3、C【分析】根據(jù)平行線分線段成比例定理即可得出答案.【題目詳解】∵AD∥BE∥CF,∴.∵AB=3,BC=6,DE=2,∴,∴EF=1.故選C.【題目點撥】本題考查了平行線分線段成比例定理,掌握定理的內(nèi)容是解題的關鍵.4、A【分析】方程整理為一般形式,找出常數(shù)項即可.【題目詳解】方程整理得:x2?3x+10=0,則a=1,b=?3,c=10.故答案選A.【題目點撥】本題考查了一元二次方程的一般形式,解題的關鍵是熟練的掌握一元二次方程的每種形式.5、A【解題分析】∵堤壩橫斷面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故選A6、C【解題分析】試題解析:A.“經(jīng)過有交通信號的路口遇到紅燈”是隨機事件,說法錯誤.B.已知某籃球運動員投籃投中的概率為0.6,則他投10次一定可投中6次,說法錯誤.C.投擲一枚硬幣正面朝上是隨機事件,說法正確.D.明天太陽從東方升起是必然事件.說法錯誤.故選C.7、C【分析】根據(jù)三角形的穩(wěn)定性,可直接選擇.【題目詳解】加上EF后,原圖形中具有△AEF了,故這種做法根據(jù)的是三角形的穩(wěn)定性.
故選:C.8、D【分析】分別求出AC、CE、BC、CD的長,根據(jù)點與圓的位置關系的判斷方法進行判斷即可.【題目詳解】如圖,連接CE,∵∠C=90°,AB=5,AC=4,∴BC==3,∵點D,E分別是AC,AB的中點,∴CD=AC=2,CE=AB=,∵⊙C的半徑為3,BC=3,,,∴點B在⊙C上,點E在⊙C內(nèi),點D在⊙C內(nèi),點A在⊙C外,故選:D.【題目點撥】本題考查點與圓的位置關系,解題的關鍵是求點到圓心的距離.9、C【分析】①根據(jù)折疊的性質(zhì)∠PGC=∠PBC=90°,∠BPC=∠GPC,從而證明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性質(zhì)得出AE=DE,即可利用條件證明△ABE≌△DCE;③先根據(jù)題意證明△ABE∽△DEC,再利用對應邊成比例求出DE即可;④根據(jù)勾股定理和折疊的性質(zhì)得出△ECF∽△GCP,再利用對應邊成比例求出BP,即可算出sin值;⑤連接FG,先證明?BPGF是菱形,再根據(jù)菱形的性質(zhì)得出△GEF∽△EAB,再利用對應邊成比例求出BE·EF.【題目詳解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折疊得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正確;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中點,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正確;③當AD=25時,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,設AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正確;④由③知:CE=,BE=,由折疊得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,設BP=BF=PG=y(tǒng),∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正確;⑤如圖,連接FG,由①知BF∥PG,∵BF=PG=PB,∴?BPGF是菱形,∴BP∥GF,F(xiàn)G=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE?EF=AB?GF=12×9=1;故⑤正確,所以本題正確的有①②③⑤,4個,故選:C.【題目點撥】本題考查矩形與相似的結(jié)合、折疊的性質(zhì),關鍵在于通過基礎知識證明出所需結(jié)論,重點在于相似對應邊成比例.10、D【分析】根據(jù)“一根繩子去量一根木條,繩子剩余4.5尺”可知:繩子-木條=4.5,再根據(jù)“將繩子對折再量木條,木條剩余1尺”可知:木條-繩子=1,據(jù)此列出方程組即可.【題目詳解】由題意可得,.故選:D.【題目點撥】本題考查二元一次方程組的實際應用,解題的關鍵是明確題意,找出等量關系,列出相應的二元一次方程組.11、C【分析】根據(jù)拋物線的對稱軸和交點問題可以分析出系數(shù)的正負.【題目詳解】由函數(shù)圖象可得:a>0,c<0,所以b>0,2a-b=0,所以abc<0,拋物線與x軸的另一個交點是(1,0),當x=2時,y>0,所以4,故③錯誤,因為,是拋物線上兩點,且離對稱軸更遠,所以故選:C【題目點撥】考核知識點:二次函數(shù)圖象.理解二次函數(shù)系數(shù)和圖象關系是關鍵.12、A【分析】根據(jù)眾數(shù)和中位數(shù)的定義解答即可.【題目詳解】解:在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是3,即眾數(shù)是3;
把這組數(shù)據(jù)按照從小到大的順序排列3,3,3,4,4,5,6,
∴中位數(shù)為4;
故選:A.【題目點撥】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.二、填空題(每題4分,共24分)13、35°【分析】由同弧所對的圓周角相等求得∠A=∠D=42°,根據(jù)三角形內(nèi)角與外角的關系可得∠B的大?。绢}目詳解】∵同弧所對的圓周角相等求得∠D=∠A=42°,且∠APD=77°是三角形PBD外角,∴∠B=∠APD?∠D=35°,故答案為:35°.【題目點撥】此題考查圓周角定理及其推論,解題關鍵明確三角形內(nèi)角與外角的關系.14、②④【分析】①根據(jù)函數(shù)圖象可得的正負性,即可判斷;②令,即可判斷;③令,方程有兩個不相等的實數(shù)根即可判斷;④根據(jù)對稱軸大于0小于1即可判斷.【題目詳解】①由函數(shù)圖象可得、∵對稱軸∴∴②令,則③令,由圖像可知方程有兩個不相等的實數(shù)根∴④∵對稱軸∴∴綜上所述,值小于的有②④.【題目點撥】本題考察二次函數(shù)圖象與系數(shù)的關系,充分利用圖象獲取解題的關鍵信息是關鍵.15、【題目詳解】畫樹狀圖得:∵共有6種等可能的結(jié)果,甲、乙二人相鄰的有4種情況,∴甲、乙二人相鄰的概率是:.16、【分析】首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A在反比例函數(shù)的圖象上,點B在反比例函數(shù)的圖象上,即可得S△AOC=2,S△OBD=,然后根據(jù)相似三角形面積的比等于相似比的平方,即可得,然后由正切函數(shù)的定義求得答案.【題目詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,∴,∵點A在反比例函數(shù)的圖象上,點B在反比例函數(shù)的圖象上,∴S△OBD=,S△AOC=2,∴,∴tan∠OAB=.故答案為:.【題目點撥】本題考查了相似三角形的判定與性質(zhì)、反比例函數(shù)的性質(zhì)以及直角三角形的性質(zhì).注意掌握數(shù)形結(jié)合思想的應用,注意掌握輔助線的作法.17、1.【分析】根據(jù)題目所給條件,利用平行四邊形的判定方法分別進行分析即可.【題目詳解】解:由題意:①②組合可根據(jù)一組對邊平行且相等的四邊形是平行四邊形判定出四邊形ABCD為平行四邊形;③④組合可根據(jù)對角線互相平分的四邊形是平行四邊形判定出四邊形ABCD為平行四邊形;①③可證明△ADO≌△CBO,進而得到AD=CB,可利用一組對邊平行且相等的四邊形是平行四邊形判定出四邊形ABCD為平行四邊形;①④可證明△ADO≌△CBO,進而得到AD=CB,可利用一組對邊平行且相等的四邊形是平行四邊形判定出四邊形ABCD為平行四邊形;
∴有1種可能使四邊形ABCD為平行四邊形.故答案是1.【題目點撥】此題主要考查了平行四邊形的判定,關鍵是熟練掌握平行四邊形的判定定理.18、100【分析】根據(jù)Rt△ABC中∠B=50°,推出∠BCA=40°,根據(jù)旋轉(zhuǎn)的性質(zhì)可知,AC=AC1,∠BCA=∠C1=40°,求出∠CAC1的度數(shù),即可求出∠BAB1的度數(shù).【題目詳解】∵Rt△ABC中∠B=50°,∴∠BCA=40°,∵△ABC繞直角頂點A順時針旋轉(zhuǎn)得到△ADE.當點C在B1C1邊所在直線上,∴∠C1=∠BCA=40°,AC=AC1,∠CAB=∠C1AB1,∴∠ACC1=∠C1=40°,∴∠BAB1=∠CAC1=100°,故答案為:100.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì)和等腰三角形的判定和性質(zhì),熟練掌握其判定和性質(zhì)是解題的關鍵.三、解答題(共78分)19、(1)①方程有一個負實根,一個正實根;②詳見解析;③;(2)【分析】(1)根據(jù)函數(shù)的圖象與性質(zhì)即可得;(2)先求出方程的根的判別式,再利用③即可得出答案.【題目詳解】(1)由函數(shù)的圖象與性質(zhì)得:①函數(shù)圖象與x的負半軸和正半軸各有一個交點,則方程有一個負實根,一個正實根;②函數(shù)圖象與x軸的兩個交點均在x軸的正半軸上,畫圖如下所示:;③由②可得:;(2)方程的根的判別式為,則此方程有兩個不相等的實數(shù)根由題意,可利用③得:,解得則方程組的解為故k的取值范圍是.【題目點撥】本題考查了一元二次方程與二次函數(shù)的關系,掌握二次函數(shù)的圖象與性質(zhì)是解題關鍵.20、樹高為米.【分析】延長交BD延長線于點,根據(jù)同一時刻,物體與影長成正比可得,根據(jù)AB//CD可得△AEB∽△CED,可得,即可得出,可求出DE的長,由BE=BD+DE可求出BE的長,根據(jù)求出AB的長即可.【題目詳解】延長和相交于點,則就是樹影長的一部分,∵某一時刻測得高為的竹竿影長為,∴,∵AB//CD,∴△AEB∽△CED,∴,∴,∴,∴,∴,∴即樹高為米.【題目點撥】本題考查相似三角形的應用,熟練掌握同一時刻,物體與影長成正比及相似三角形判定定理是解題關鍵.21、(1)△FAG是等腰三角形,理由見解析;(2)成立,理由見解析;(3)BC=.【分析】(1)首先根據(jù)圓周角定理及垂直的定義得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,從而得到∠BAD=∠C,然后利用等弧對等角等知識得到AF=BF,從而證得FA=FG,判定等腰三角形;(2)成立,同(1)的證明方法即可得答案;(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F為BG的中點根據(jù)直角三角形的性質(zhì)得到AF=BF=BG=13,求得AD=AF﹣DF=13﹣5=8,根據(jù)勾股定理得到BD=12,AB=4,由∠ABC=∠ABD,∠BAC=∠ADB=90°可證明△ABC∽△DBA,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【題目詳解】(1)△FAG等腰三角形;理由如下:∵BC為直徑,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC為直徑,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F為BG的中點,∵△BAG為直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠ABD,∠BAC=∠ADB=90°,∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直徑BC=.【題目點撥】本題考查圓周角定理、相似三角形的判定與性質(zhì)及勾股定理,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.22、(1)2t,(5﹣t);(2)t=2或3;(3)t或1.【分析】(1)根據(jù)路程=速度×時間可求解;(2)根據(jù)S四邊形PABQ=S△ABO﹣S△PQO列出方程求解;(3)分或兩種情形列出方程即可解決問題.【題目詳解】(1)OP=2tcm,OQ=(5﹣t)cm.故答案為:2t,(5﹣t).(2)∵S四邊形PABQ=S△ABO﹣S△PQO,∴1910×52t×(5﹣t),解得:t=2或3,∴當t=2或3時,四邊形PABQ的面積為19cm2.(3)∵△POQ與△AOB相似,∠POQ=∠AOB=90°,∴或.①當,則,∴t,②當時,則,∴t=1.綜上所述:當t或1時,△POQ與△AOB相似.【題目點撥】本題是相似綜合題,考查相似三角形的判定和性質(zhì)、坐標與圖形的性質(zhì)、三角形的面積等知識,解答本題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.23、9【分析】過點A作AD⊥BC于D,根據(jù)銳角三角函數(shù)求出AD,然后根據(jù)三角形的面積公式計算面積即可.【題目詳解】解:過點A作AD⊥BC于D在Rt△ABD中,AB=4,∠B=60°∴AD=AB·sinB=∴S△ABC=BC·AD==9【題目點撥】此題考查的是解直角三角形的應用,掌握利用銳角三角函數(shù)解直角三角形和三角形的面積公式是解決此題的關鍵.24、見解析證明.【解題分析】試題分析:連結(jié)OC,根據(jù)平行線的性質(zhì)得到∠1=∠B,∠2=∠3,而∠B=∠3,所以∠1=∠2,則根據(jù)圓心角、弧、弦的關系即可得到結(jié)論.試題解析:連結(jié)OC,如圖,∵OD∥BC,∴∠1=∠B,∠2=∠3,又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.考點:圓心角、弧、弦的關系.25、(1);(2)【分析】(1)利用概率公式計算即可;(2)列樹狀圖求事件的概率即可.【題目詳解】解:(1)∵小明準備到巴馬的水晶宮(記為A)、百魔洞(記為B)、百鳥巖(記為C)、長壽村(記為D)的一個景點去游玩,∴小明選擇去百魔洞旅游的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結(jié)果,其中選擇同種方案有1種,所以小明和小華都選擇去長壽村旅游的概率=.【題目點撥】此題考查概率的計算公式,列樹狀圖求事件的概率,正確列樹狀圖表示所有的等可能的結(jié)果是解題的關鍵.26、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.【分析】(1)當點F與點A重合時,x=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版在線教育平臺銷售服務合同
- 2025年度辦公室裝修與企業(yè)文化導入合同3篇
- 2024年社區(qū)衛(wèi)生服務社區(qū)健康教育宣傳合同3篇
- 2024年第三方檢測服務技術服務合同簽訂指南
- 二零二五年度企業(yè)合同負債歸入財務科目明細規(guī)范3篇
- 2024年版船舶租賃貨物運輸合同:航次租賃與租期規(guī)定
- 二零二五年度出口貿(mào)易磋商、合同訂立及外貿(mào)信用保險服務協(xié)議3篇
- 2025年度客運公司駕駛員勞動合同補充協(xié)議3篇
- 2024年綠色采購與可持續(xù)發(fā)展合同3篇
- 垃圾分類處理方案例文(2篇)
- 二氧化碳充裝流程
- 12m跨鋼棧橋設計計算
- 電路板類英語詞匯
- 美國Control4智能家居設計方案解說資料
- DES算法Matlab代碼
- 沙特的礦產(chǎn)資源開發(fā)概況及其商機
- 高一生物必修一期末試題(附答案)
- 安全事故應急響應程序流程圖(共1頁)
- 三年級_上冊牛津英語期末試卷
- 損傷容限設計基本概念原理和方法PPT課件
- 水壓式沼氣池設計
評論
0/150
提交評論