海南省2018屆高三年級(jí)二模數(shù)學(xué)試題解析_第1頁(yè)
海南省2018屆高三年級(jí)二模數(shù)學(xué)試題解析_第2頁(yè)
海南省2018屆高三年級(jí)二模數(shù)學(xué)試題解析_第3頁(yè)
海南省2018屆高三年級(jí)二模數(shù)學(xué)試題解析_第4頁(yè)
海南省2018屆高三年級(jí)二模數(shù)學(xué)試題解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

海南省2018屆高三年級(jí)二模數(shù)學(xué)試題及分析海南省2018屆高三年級(jí)二模數(shù)學(xué)試題及分析海南省2018屆高三年級(jí)二模數(shù)學(xué)試題及分析海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析海南省2017—2018學(xué)年高中畢業(yè)班階段性測(cè)試數(shù)學(xué)(理科)一、選擇題:本大題共12個(gè)小題,每題5分,共60分.在每題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)為哪一項(xiàng)吻合題目要求的.1.已知會(huì)合A{x|3x220},B{x|log2(2x1)0},則AB(x)A.x|12B.2x1xx|33C.{x|1x1}D.1x2x|232.已知復(fù)數(shù)z滿足z(34i)34i,z為z的共軛復(fù)數(shù),則z()A.1B.2C.3D.43.如圖,當(dāng)輸出y4時(shí),輸入的x能夠是()A.2018B.2017C.2016D.20144.已知x為銳角,acosx3,則a的取值范圍為()sinxA.[2,2]B.(1,3)C.(1,2]D.(1,2)5.把一枚質(zhì)地均勻、半徑為1的圓形硬幣扔擲在一個(gè)邊長(zhǎng)為8的正方形托盤上,已知硬幣平放在托盤上且沒(méi)有掉下去,則該硬幣完整落在托盤上(即沒(méi)有任何部分在托盤之外)的概率為()1海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析A.1B.9C.D.158164166.(x2x1)(x1)4的睜開(kāi)式中,x3的系數(shù)為()A.3B.2C.1D.47.已知正項(xiàng)數(shù)列{an}滿足an122an2an1an0,設(shè)bnlog2an1,則數(shù)列{bn}的前n項(xiàng)a1和為()A.nB.n(n1)C.n(n1)D.(n1)(n2)222如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的最長(zhǎng)棱的長(zhǎng)度為()A.62B.63C.8D.99.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a11,anan12n1,則S2017()2017A.1009B.1008C.2D.110.已知函數(shù)f(x)是定義在R上的偶函數(shù),f(x)f(12x),當(dāng)x[0,6]時(shí),f(x)log6(x1),若f(a)1(a[0,2020]),則a的最大值是()A.2018B.2010C.2020D.201111.已知拋物線22px(p0)的焦點(diǎn)為F,過(guò)點(diǎn)F作相互垂直的兩直線AB,CD與拋物y11,則四邊形ACBD的面積的最小值為線分別訂交于A,B以及C,D,若1AFBF()A.18B.30C.32D.362海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析12.已知a1,方程1exxa0與ln2xxa0的根分別為x,x2,則21x12x222x1x2的取值范圍為()A.(1,)B.(0,)C.1,D.1,122二、填空題:此題共4小題,每題5分,共20分.13.已知a(1,m),b1,ab7,且向量a,b的夾角是60,則m.x114.已知實(shí)數(shù)x,y滿足x2y10,則zx3y的最大值是.xy32215.已知雙曲線xy1(a0,b0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1且垂直于x軸的22ab直線與該雙曲線的左支交于A,B兩點(diǎn),AF2,BF2分別交y軸于P,Q兩點(diǎn),若PQF2的周長(zhǎng)為16,則b的最大值為.a(chǎn)116.如圖,在三棱錐PABC中,PC平面ABC,ACCB,已知AC2,PB26,則當(dāng)PAAB最大時(shí),三棱錐PABC的表面積為.三、解答題:共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.第17~21題為必考題,每個(gè)試題考生都一定作答.第22,23題為選考題,考生依據(jù)要求作答.(一)必考題:共60分.17.已知在ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且3bcosAasinAcosCcsinAcosA0.(1)求角A的大??;3海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析(2)若a3,B,求ABC的面積.1218.如圖,在直三棱柱ABCA1B1C1中,BAC90,ABAC2,點(diǎn)M為A1C1的中點(diǎn),點(diǎn)N為AB1上一動(dòng)點(diǎn).(1)能否存在一點(diǎn)N,使得線段MN//平面BB1C1C?若存在,指出點(diǎn)N的地點(diǎn),若不存在,請(qǐng)說(shuō)明原由.(2)若點(diǎn)N為AB1的中點(diǎn)且CMMN,求二面角MCNA的正弦值.某城市為鼓舞人們綠色出行,乘坐地鐵,地鐵企業(yè)決定依據(jù)乘客經(jīng)過(guò)地鐵站的數(shù)目實(shí)行分段優(yōu)惠政策,不超出30站的地鐵票價(jià)以下表:乘坐站數(shù)x0x1010x2020x30票價(jià)(元)3694海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超出30站.甲、乙乘坐不超出10站的概率分別為1,1;甲、乙乘坐超出20站的概率分別為1,1.4323(1)求甲、乙兩人付費(fèi)同樣的概率;(2)設(shè)甲、乙兩人所付花費(fèi)之和為隨機(jī)變量X,求X的分布列和數(shù)學(xué)希望.x220.在平面直角坐標(biāo)系yxOy中,已知橢圓2ab

22,A,F(xiàn)分21(ab0)的離心率為2別為橢圓的上極點(diǎn)和右焦點(diǎn),AOF的面積為1,直線AF與橢圓交于另一個(gè)點(diǎn)B,線段AB2的中點(diǎn)為P.(1)求直線OP的斜率;(2)設(shè)平行于OP的直線l與橢圓交于不一樣的兩點(diǎn)C,D,且與直線AF交于點(diǎn)Q,求證:存在常數(shù),使得QCQDQAQB.5海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析x21.已知函數(shù)f(x)e,g(x)lnx1.x(1)求函數(shù)f(x)的單一區(qū)間;3(2)證明:xf(x)g(x).(二)選考題:共10分.請(qǐng)考生在22,23題中任選一題作答.假如多做,則按所做的第一題計(jì)分.22.[選修4-4:坐標(biāo)系與參數(shù)方程]x1t在平面直角坐標(biāo)系xOy中,已知直線l:2(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),y33t2x軸的正半軸為極軸成立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.3(1)求曲線C的直角坐標(biāo)方程;6海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析(2)設(shè)點(diǎn)M的極坐標(biāo)為3,,直線l與曲線C的交點(diǎn)為A,B,求MAMB的值.223.[選修4-5:不等式選講]已知函數(shù)f(x)x1xm.(1)當(dāng)m3時(shí),求不等式f(x)5的解集;(2)若不等式f(x)2m1對(duì)xR恒成立,務(wù)實(shí)數(shù)m的取值范圍.7海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析海南省2017—2018學(xué)年高中畢業(yè)班階段性測(cè)試數(shù)學(xué)(理科)·答案一、選擇題1-5:DABCB6-10:BCDAD11、12:CA二、填空題13.314.715.443215616.3三、解答題17.(1)由3bcosAasinAcosCcsinAcosA0及正弦定理得,sinA(sinAcosCcosAsinC)3sinBcosA,即sinAsin(AC)3sinBcosA,又sin(AC)sinB0,所以tanA3,又A(0,),所以A2.3(2)由(1)知A2,又B,易求得C,3124在ABC中,由正弦定理得b3,所以b6222.sinsin123所以ABC的面積為S1162233absinC2324.22(1)存在點(diǎn)N,且N為AB1的中點(diǎn).證明以下:如圖,連結(jié)AB,BC1,點(diǎn)M,N分別為AC1,AB的中點(diǎn),111所以MN為A1BC1的一條中位線,MN//BC,MN平面BB1C1C,BC1平面BB1C1C,所以MN//平面BB1C1C.8海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析22(2)設(shè)AA1a,則221,2a4a8CMaMN1,4422202aaCN54,4由CMMN,得CM2MN2CN2,解得a2.由題意以點(diǎn)A為坐標(biāo)原點(diǎn),AB為x軸,AC為y軸,AA1為z軸成立以以下圖的空間直角2坐標(biāo)系,可得A(0,0,0),C(0,2,0),N1,0,,M(0,1,2),2故AN1,0,2(0,2,0),CN1,2,2(0,1,2),.,AC,CM22設(shè)m(x,y,z)為平面ANC的一個(gè)法向量,則2y0,mAC0,得2mAN0,xz0,2令x1,得平面ANC的一個(gè)法向量m(1,0,2),同理可得平面MNC的一個(gè)法向量為n(3,2,2),故二面角MCNA的余弦值為cosm,n3025.315152故二面角MCNA的正弦值為15255.151519.(1)由題意知甲乘坐超出10站且不超出20111站的概率為12,449海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析乙乘坐超出10站且不超出20站的概率為11113,33設(shè)“甲、乙兩人付費(fèi)同樣”為事件A,則P(A)1111111434323,3所以甲、乙兩人付費(fèi)同樣的概率是1.3(2)由題意可知X的全部可能取值為:6,9,12,15,18.P(X6)111,4312P(X9)111114343,6P(X12)1111111,4323433P(X12)11111,43234P(X18)111.236所以X的分布列以下:X69121518P11111126346所以X的數(shù)學(xué)希望E(X)619112115115163186.12442220.(1)由于橢圓的離心率為2,所以ab2,即a22b2,c2a2b2b2,2a20),所以11x2所以A(0,c),F(xiàn)(c,c2,所以cy21.1,所以橢圓的方程為2222x2直線AF的方程為yx1,聯(lián)立2y1,消去y得3x24x0,所以x4或x0,yx1,341所以B,,從而得線段AB3310所以直線OP的斜率為312230

21的中點(diǎn)P,.33.(2)由(1)知,直線AF的方程為yx1,直線OP的斜率為1,設(shè)直線l的方程為210海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析1t(t0).yx21x22t,聯(lián)立yxt,3所以點(diǎn)的坐標(biāo)為22t2t12得2t,.yx1,y1333.所以QA2t222t2t22t2,,QB,.3333所以QAQB82(t1).92x21,2y3聯(lián)立消去2220,1y得x2tx2t2xt,2由已知得4(32t20,又t0,得t60,6),0.22設(shè)C(x1,y1),D(x2,y2),則y1112x1t,y2x2t,24t4t2x1x2,x1x243.3所以QC22t2t12t21t1,x13,y13x13,x132QDx22t2,1x2t1,323故QCQDx12t2x22t21t11x2t133x1232355t55(t25245t54t5(t1)28x2)1)4t52x1x26(x19436394(t1).49所以QCQD5QAQB.所以存在常數(shù)5,使得QCQDQAQB.44x21.(1)由題易知f'(x)(x1)e,2x當(dāng)x(,0)(0,1)時(shí),f'(x)0,當(dāng)x(1,)時(shí),f'(x)0,11海南省2018屆高三年級(jí)二模數(shù)學(xué)(理)試題及答案分析所以f(x)的單一遞減區(qū)間為(,0)(0,1),單一遞加區(qū)間為(1,).xlnx1(2)g(x)的定義域?yàn)?0,),要證x3ef(x)g(x),即證x3.x由(1)可知f(x)在(0,1)上遞減,在(1,)上遞加,所以f(x)f(1)e.設(shè)h(x)lnx123lnx3,x0,由于h'(x)4,xx22當(dāng)x(0,e3)時(shí),h'(x)0,當(dāng)x(e3,)時(shí),h'(x)0,2222所以h(x)在(0,e3)上單一遞加,在(e3,)上單一遞減,所以h(x)h(e3)e,32而ee,所以x3g(x).3f(x)22.(1)把4sin3睜開(kāi)得2sin23cos,兩邊同乘得22sin23cos①.將2x2y2,cosx,siny代入①即得曲線C的直角坐標(biāo)方程為x2y223x2y0②.x1t,(2)將2代入②式,得233t30,3ty3t2易知點(diǎn)M的直角坐標(biāo)為(0,3).設(shè)這個(gè)方程的兩個(gè)實(shí)數(shù)根分別為t1,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論