版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省南通市如皋市丁堰鎮(zhèn)初級中學數(shù)學九年級第一學期期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,⊙O的直徑長10,弦AB=8,M是弦AB上的動點,則OM的長的取值范圍是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<52.若關于x的一元二次方程ax2+bx+6=0(a≠0)的其中一個解是x=1,則2018﹣a﹣b的值是()A.2022 B.2018 C.2017 D.20243.已知x=3是關于x的一元二次方程x2﹣2x﹣m=0的根,則該方程的另一個根是()A.3 B.﹣3 C.1 D.﹣14.如圖,正方形ABCD的邊長為2,點E是BC的中點,AE與BD交于點P,F(xiàn)是CD上的一點,連接AF分別交BD,DE于點M,N,且AF⊥DE,連接PN,則下列結論中:①;②;③tan∠EAF=;④正確的是()A.①②③ B.①②④ C.①③④ D.②③④5.如圖,將△ABC繞著點A順時針旋轉30°得到△AB′C′,若∠BAC′=80°,則∠B′AC=()‘A.20° B.25° C.30° D.35°6.如圖,AB是⊙O的弦,AC是⊙O的切線,A為切點,BC經(jīng)過圓心,若∠B=25°,則∠C的大小等于()A.25° B.20° C.40° D.50°7.如圖,AB是⊙O的直徑,C是⊙O上一點(A、B除外),∠BOD=44°,則∠C的度數(shù)是()A.44° B.22° C.46° D.36°8.若關于x的不等式組無解,則a的取值范圍是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥39.已知⊙O的半徑為4cm.若點P到圓心O的距離為3cm,則點P()A.在⊙O內 B.在⊙O上C.在⊙O外 D.與⊙O的位置關系無法確定10.下列說法正確的是()A.等弧所對的圓心角相等B.三角形的外心到這個三角形的三邊距離相等C.經(jīng)過三點可以作一個圓D.相等的圓心角所對的弧相等11.下列說法正確的是()A.25人中至少有3人的出生月份相同B.任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次一定反面朝上C.天氣預報說明天降雨的概率為10%,則明天一定是晴天D.任意拋擲一枚均勻的骰子,擲出的點數(shù)小于3的概率是12.若將二次函數(shù)的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得圖象對應函數(shù)的表達式為()A. B.C. D.二、填空題(每題4分,共24分)13.定義符號max{a,b}的含義為:當a≥b時,max{a,b}=a;當a<b時,max{a,b}=b,如:max{3,1}=3,max{﹣3,2}=2,則方程max{x,﹣x}=x2﹣6的解是_____.14.某農科所在相同條件下做某作物種子發(fā)芽率的試驗,結果如下表所示:種子個數(shù)1002003004005006007008009001000發(fā)芽種子個數(shù)94187282338435530621781814901發(fā)芽種子頻率0.9400.9350.9400.8450.8700.8830.8910.8980.9040.901根據(jù)頻率的穩(wěn)定性,估計該作物種子發(fā)芽的概率為__________(結果保留小數(shù)點后一位).15.在△ABC中,tanB=,BC邊上的高AD=6,AC=3,則BC長為_____.16.若關于x的一元二次方程x2﹣4x+m=0沒有實數(shù)根,則m的取值范圍是_____.17.如圖,為正五邊形的一條對角線,則∠=_____________.18.P是等邊△ABC內部一點,∠APB、∠BPC、∠CPA的大小之比是5:6:7,將△ABP逆時針旋轉,使得AB與AC重合,則以PA、PB、PC的長為邊的三角形的三個角∠PCQ:∠QPC:∠PQC=________.三、解答題(共78分)19.(8分)如圖,△ABC內接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.(1)求∠DAF的度數(shù);(2)求證:AE2=EF?ED;(3)求證:AD是⊙O的切線.20.(8分)某公司研發(fā)了一種新產品,成本是200元/件,為了對新產品進行合理定價,公司將該產品按擬定的價格進行銷售,調查發(fā)現(xiàn)日銷量y(件)與單價x(元/件)之間存在一次函數(shù)關系y=﹣2x+800(200<x<400).(1)要使新產品日銷售利潤達到15000元,則新產品的單價應定為多少元?(2)為使公司日銷售獲得最大利潤,該產品的單價應定為多少元?21.(8分)先化簡,再求值:(x-1)÷(x-),其中x=+122.(10分)計算:3tan30°?tan45°+2sin60°23.(10分)定義:有且僅有一組對角相等的凸四邊形叫做“準平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準平行四邊形.(1)如圖①,是上的四個點,,延長到,使.求證:四邊形是準平行四邊形;(2)如圖②,準平行四邊形內接于,,若的半徑為,求的長;(3)如圖③,在中,,若四邊形是準平行四邊形,且,請直接寫出長的最大值.24.(10分)如圖,有四張背面相同的紙牌A、B、C、D,其正面分別畫有四個不同的圖形,小明將這四張紙牌背面朝上洗勻后隨機摸出一張,放回后洗勻再隨機摸出一張.(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結果(紙牌用A、B、C、D表示);(2)求兩次摸出的牌面圖形既是中心對稱圖形又是軸對稱圖形的概率.25.(12分)定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線.如圖1,把一張頂角為36o的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,我們把這兩條線段叫做等腰三角形的三分線.(1)如圖2,請用兩種不同的方法畫出頂角為45o的等腰三角形的三分線,并標注每個等腰三角形頂角的度數(shù):(若兩種方法分得的三角形成3對全等三角形,則視為同一種).(2)如圖3,△ABC中,AC=2,BC=3,∠C=2∠B,請畫出△ABC的三分線,并求出三分線的長.26.如圖,在平面直角坐標系xOy中,拋物線()與x軸交于A,B兩點(點A在點B的左側),經(jīng)過點A的直線l:與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC(1)直接寫出點A的坐標,并求直線l的函數(shù)表達式(其中k,b用含a的式子表示);(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;(3)設P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、A【題目詳解】解:的直徑為10,半徑為5,當時,最小,根據(jù)勾股定理可得,與重合時,最大,此時,所以線段的的長的取值范圍為,故選A.【題目點撥】本題考查垂徑定理,掌握定理內容正確計算是本題的解題關鍵.2、D【分析】根據(jù)題意將x=1代入原方程并整理得出,最后進一步整體代入求值即可.【題目詳解】∵x=1是原方程的一個解,∴把x=1代入方程,得:,即.∴,故選:D.【題目點撥】本題主要考查了一元二次方程的解,熟練掌握相關概念是解題關鍵.3、D【分析】設方程的另一根為t,根據(jù)根與系數(shù)的關系得到3+t=2,然后解關于t的一次方程即可.【題目詳解】設方程的另一根為t,
根據(jù)題意得3+t=2,
解得t=﹣1.
即方程的另一根為﹣1.
所以D選項是正確的.【題目點撥】本題考查了根與系數(shù)的關系:是一元二次方程的兩根時,,.4、A【解題分析】利用正方形的性質,得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再證明△ABM∽△FDM,即可解答①;根據(jù)題意可知:AF=DE=AE=,再根據(jù)三角函數(shù)即可得出③;作PH⊥AN于H.利用平行線的性質求出AH=,即可解答②;利用相似三角形的判定定理,即可解答④【題目詳解】解:∵正方形ABCD的邊長為2,點E是BC的中點,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF與△DCE中,,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴,∴S△ABM=4S△FDM;故①正確;根據(jù)題意可知:AF=DE=AE=,∵×AD×DF=×AF×DN,∴DN=,∴EN=,AN=,∴tan∠EAF=,故③正確,作PH⊥AN于H.∵BE∥AD,∴,∴PA=,∵PH∥EN,∴,∴AH=,∴PH=∴PN=,故②正確,∵PN≠DN,∴∠DPN≠∠PDE,∴△PMN與△DPE不相似,故④錯誤.故選:A.【題目點撥】此題考查三角函數(shù),相似三角形的判定與性質,全等三角形的判定與性質,正方形的性質難度較大,解題關鍵在于綜合掌握各性質5、A【解題分析】根據(jù)圖形旋轉的性質,圖形旋轉前后不發(fā)生任何變化,對應點旋轉的角度即是圖形旋轉的角度,可直接得出∠C′AC=30°,由∠BAC′=80°可得∠BAC=∠B′AC′=50°,從而可得結論.【題目詳解】由旋轉的性質可得,∠BAC=∠B′AC′,∵∠C′AC=30°,∴∠BAC=∠B′AC′=50°,∴∠B′AC=20°.故選A.【題目點撥】此題主要考查了旋轉的性質,圖形旋轉前后不發(fā)生任何變化,這是解決問題的關鍵.6、C【解題分析】連接OA,根據(jù)切線的性質,即可求得∠C的度數(shù).【題目詳解】如圖,連接OA.∵AC是⊙O的切線,∴∠OAC=90°.∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故選C.【題目點撥】本題考查了圓的切線性質,以及等腰三角形的性質,已知切線時常用的輔助線是連接圓心與切點.7、B【分析】根據(jù)圓周角定理解答即可.【題目詳解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故選:B.【題目點撥】本題考查了圓周角定理,屬于基本題型,熟練掌握圓周角定理是關鍵.8、A【解題分析】利用不等式組取解集的方法,根據(jù)不等式組無解求出a的取值范圍即可.【題目詳解】∵不等式組無解,∴a﹣4≥3a+2,解得:a≤﹣3,故選A.【題目點撥】本題考查了一元一次不等式組的解集,熟知一元一次不等式組的解集的確定方法“同大取大、同小取小、大小小大中間找、大大小小無處找”是解題的關鍵.9、A【分析】根據(jù)點與圓的位置關系判斷即可.【題目詳解】∵點P到圓心的距離為3cm,而⊙O的半徑為4cm,∴點P到圓心的距離小于圓的半徑,∴點P在圓內,故選:A.【題目點撥】此題考查的是點與圓的位置關系,掌握點與圓的位置關系的判斷方法是解決此題的關鍵.10、A【解題分析】試題分析:A.等弧所對的圓心角相等,所以A選項正確;B.三角形的外心到這個三角形的三個頂點的距離相等,所以B選項錯誤;C.經(jīng)過不共線的三點可以作一個圓,所以C選項錯誤;D.在同圓或等圓中,相等的圓心角所對的弧相等,所以D選項錯誤.故選C.考點:1.確定圓的條件;2.圓心角、弧、弦的關系;3.三角形的外接圓與外心.11、A【分析】根據(jù)概率的意義對各選項分析判斷后利用排除法求解.【題目詳解】A、25人中至少有3人的出生月份相同,原說法正確,故這個選項符合題意;B、任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次可能正面朝上,可能反面朝上,原說法錯誤,故這個選項不符合題意;C、天氣預報說明天的降水概率為10%,則明天不一定是晴天,原說法錯誤,故這個選項不符合題意;D、任意拋擲一枚均勻的骰子,擲出的點數(shù)小于3有2種可能,故概率是,原說法錯誤,故這個選項不符合題意;故選:A.【題目點撥】本題考查了概率的意義,概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生,機會小也有可能發(fā)生.12、C【分析】根據(jù)拋物線的平移規(guī)律:上加下減,左加右減解答即可.【題目詳解】解:將的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得二次函數(shù)的表達式為:.故選:C.【題目點撥】本題考查了拋物線的平移,屬于基本知識題型,熟練掌握拋物線的平移規(guī)律是解題的關鍵.二、填空題(每題4分,共24分)13、1或﹣1【分析】分兩種情況:x≥﹣x,即x≥0時;x<﹣x,即x<0時;進行討論即可求解.【題目詳解】當x≥﹣x,即x≥0時,∴x=x2﹣6,即x2﹣x﹣6=0,(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2(舍去);當x<﹣x,即x<0時,∴﹣x=x2﹣6,即x2+x﹣6=0,(x+1)(x﹣2)=0,解得:x1=﹣1,x4=2(舍去).故方程max{x,﹣x}=x2﹣6的解是x=1或﹣1.故答案為:1或﹣1.【題目點撥】考查了解了一元二次方程-因式分解法,關鍵是熟練掌握定義符號max{a,b}的含義,注意分類思想的應用.14、0.9【分析】選一個表格中發(fā)芽種子頻率比較按近的數(shù),如0.904、0.901等都可以.【題目詳解】解:根據(jù)題意,由頻率估計概率,則估計該作物種子發(fā)芽的概率為:0.9;故答案為:0.9;【題目點撥】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.15、5或1【分析】分兩種情況:AC與AB在AD同側,AC與AB在AD的兩側,在Rt△ABD中,通過解直角三角形求得BD,用勾股定理求得CD,再由線段和差求BC便可.【題目詳解】解:情況一:當AC與AB在AD同側時,如圖1,
∵AD是BC邊上的高,AD=6,tanB=,AC=3
∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD-CD=8-3=5;
情況二:當AC與AB在AD的兩側,如圖2,
∵AD是BC邊上的高,AD=6,tanB=,AC=3
∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD+CD=8+3=1;
綜上,BC=5或1.
故答案為:5或1.【題目點撥】本題主要考查了解直角三角形的應用題,關鍵是分情況討論,比較基礎,容易出錯的地方是漏解.16、m>4【分析】根據(jù)根的判別式即可求出答案.【題目詳解】解:由題意可知:△<0,∴,∴m>4故答案為:m>4【題目點撥】本題考查根的判別式,解題的關鍵是熟練運用根的判別式.17、36°【解題分析】360°÷5=72°,180°-72°=108°,所以,正五邊形每個內角的度數(shù)為108°,即可知∠A=108°,又知△ABE是等腰三角形,則∠ABE=(180°-108°)=36°.18、3:4:2【分析】將△APB繞A點逆時針旋轉60得△AQC,顯然有△AQC≌△APB,連PQ,可得△AQP是等邊三角形,△QCP的三邊長分別為PA,PB,PC,由∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,可得∠APB=100,∠BPC=120,∠CPA=140,可得答案.【題目詳解】解:如圖,將△APB繞A點逆時針旋轉60得△AQC,顯然有△AQC≌△APB,連PQ,AQ=AP,∠QAP=60,△AQP是等邊三角形,PQ=AP,QC=PB,△QCP的三邊長分別為PA,PB,PC,∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,∠APB=100,∠BPC=120,∠CPA=140,∠PQC=∠AQC-∠AQP=∠APB-∠AQP=100-60=40,∠QPC=∠APC-∠APQ=140-60=80,∠PCQ=180-(40+80)=60,∠PCQ:∠QPC:∠PQC=3:4:2,故答案為:3:4:2.【題目點撥】本題主要考查旋轉的性質及等邊三角形的性質,綜合性大,注意運算的準確性.三、解答題(共78分)19、(1)∠DAF=36°;(2)證明見解析;(3)證明見解析.【解題分析】(1)求出∠ABC、∠ABD、∠CBD的度數(shù),求出∠D度數(shù),根據(jù)三角形內角和定理求出∠BAF和∠BAD度數(shù),即可求出答案;(2)求出△AEF∽△DEA,根據(jù)相似三角形的性質得出即可;(3)連接AO,求出∠OAD=90°即可.【題目詳解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)證明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴,∴AE2=EF×ED;(3)證明:連接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA為半徑,∴AD是⊙O的切線.【題目點撥】本題考查了切線的判定,圓周角定理,三角形內角和定理,等腰三角形的性質等知識點,能綜合運用定理進行推理是解此題的關鍵.20、(1)要使新產品日銷售利潤達到15000元,則新產品的單價應定為250元或350元;(2)為使公司日銷售獲得最大利潤,該產品的單價應定為300元.【分析】(1)根據(jù)“總利潤=每件的利潤×銷量”列出一元二次方程即可求出結論;(2)設公司日銷售獲得的利潤為w元,根據(jù)“總利潤=每件的利潤×銷量”即可求出w與x的函數(shù)關系式,然后利用二次函數(shù)求最值即可.【題目詳解】(1)根據(jù)題意得,(﹣2x+800)(x﹣200)=15000,解得:x1=250,x2=350,答要使新產品日銷售利潤達到15000元,則新產品的單價應定為250元或350元;(2)設公司日銷售獲得的利潤為w元,根據(jù)題意得,w=y(tǒng)(x﹣200)=(﹣2x+800)(x﹣200)=﹣2x2+1200x﹣160000=﹣2(x﹣300)2+20000,∵﹣2<0,∴當x=300時,獲得最大利潤為20000元,答:為使公司日銷售獲得最大利潤,該產品的單價應定為300元.【題目點撥】此題考查的是一元二次方程的應用和二次函數(shù)的應用,掌握實際問題中的等量關系和利用二次函數(shù)求最值是解決此題的關鍵.21、1+【分析】先化簡分式,然后將x的值代入計算即可.【題目詳解】解:原式=(x?1)÷,當x=+1時,原式=.【題目點撥】本題考查了分式的化簡求值,熟練掌握分式混合運算法則是解題的關鍵.22、【分析】先計算出特殊的三角函數(shù)值,按照運算順序計算即可.【題目詳解】解:原式
.【題目點撥】本題主要考查特殊銳角的三角函數(shù)值,解題的關鍵是熟記特殊銳角的三角函數(shù)值.23、(1)見解析;(2);(3)【分析】(1)先根據(jù)同弧所對的圓周角相等證明三角形ABC為等邊三角形,得到∠ACB=60°,再求出∠APB=60°,根據(jù)AQ=AP判定△APQ為等邊三角形,∠AQP=∠QAP=60°,故∠ACB=∠AQP,可判斷∠QAC>120°,∠QBC<120°,故∠QAC≠∠QBC,可證四邊形是準平行四邊形;(2)根據(jù)已知條件可判斷∠ABC≠∠ADC,則可得∠BAD=∠BCD=90°,連接BD,則BD為直徑為10,根據(jù)BC=CD得△BCD為等腰直角三角形,則∠BAC=∠BDC=45°,在直角三角形BCD中利用勾股定理或三角函數(shù)求出BC的長,過B點作BE⊥AC,分別在直角三角形ABE和△BEC中,利用三角函數(shù)和勾股定理求出AE、CE的長,即可求出AC的長.(3)根據(jù)已知條件可得:∠ADC=∠ABC=60°,延長BC到E點,使BE=BA,可得三角形ABE為等邊三角形,∠E=60°,過A、E、C三點作圓o,則AE為直徑,點D在點C另一側的弧AE上(點A、點E除外),連接BO交弧AE于D點,則此時BD的長度最大,根據(jù)已知條件求出BO、OD的長度,即可求解.【題目詳解】(1)∵∴∠ABC=∠BAC=60°∴△ABC為等邊三角形,∠ACB=60°∵∠APQ=180°-∠APC-∠CPB=60°又AP=AQ∴△APQ為等邊三角形∴∠AQP=∠QAP=60°∴∠ACB=∠AQP∵∠QAC=∠QAP+∠PAB+∠BAC=120°+∠PAB>120°故∠QBC=360°-∠AQP-∠ACB-∠QAC<120°∴∠QAC≠∠QBC∴四邊形是準平行四邊形(2)連接BD,過B點作BE⊥AC于E點∵準平行四邊形內接于,∴∠ABC≠∠ADC,∠BAD=∠BCD∵∠BAD+∠BCD=180°∴∠BAD=∠BCD=90°∴BD為的直徑∵的半徑為5∴BD=10∵BC=CD,∠BCD=90°∴∠CBD=∠BDC=45°∴BC=BDsin∠BDC=10,∠BAC=∠BDC=45°∵BE⊥AC∴∠BEA=∠BEC=90°∴AE=ABsin∠BAC=6∵∠ABE=∠BAE=45°∴BE=AE=在直角三角形BEC中,EC=∴AC=AE+EC=(3)在中,∴∠ABC=60°∵四邊形是準平行四邊形,且∴∠ADC=∠ABC=60°延長BC到E點,使BE=BA,可得三角形ABE為等邊三角形,∠E=60°,過A、E、C三點作圓o,因為∠ACE=90°,則AE為直徑,點D在點C另一側的弧AE上(點A、點E除外),此時,∠ADC=∠AEC=60°,連接BO交弧AE于D點,則此時BD的長度最大.在等邊三角形ABE中,∠ACB=90°,BC=2∴AE=BE=2BC=4∴OE=OA=OD=2∴BO⊥AE∴BO=BEsin∠E=4∴BD=BO+0D=2+即BD長的最大值為2+【題目點撥】本題考查的是新概念及圓的相關知識,理解新概念的含義、掌握圓的性質是解答的關鍵,本題的難點在第(3)小問,考查的是與圓相關的最大值及最小值問題,把握其中的不變量作出圓是關鍵.24、(1)見解析;(2)【分析】(1)用列表法或畫出樹狀圖分析數(shù)據(jù)、列出可能的情況即可.(2)A、B、D既是軸對稱圖形,也是中心對稱圖形,C是軸對稱圖形,不是中心對稱圖形.列舉出所有情況,讓兩次摸牌的牌面圖形既是中心對稱圖形又是軸對稱圖形的情況數(shù)除以總情況數(shù)即為所求的概率.【題目詳解】(1)列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)(2)從表中可以得到,兩次摸牌所有可能出現(xiàn)的結果共有16種,其中既是中心對稱圖形又是軸對稱圖形的有9種.故所求概率是.考點:1.列表法與樹狀圖法;2.軸對稱圖形;3.中心對稱圖形.25、(1)圖見解析,;(2)三分線長分別是和【分析】(1)根據(jù)等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度車展場地租賃與媒體合作合同3篇
- 2025年度農產品出口質量保障合同3篇
- 2025年度個人環(huán)保項目貸款合同(含環(huán)保指標達標)4篇
- 二零二五年度承包工地食堂員工心理健康關愛合同3篇
- 汕尾2025年廣東汕尾陸河縣第一批城鎮(zhèn)公益性崗位招聘筆試歷年參考題庫附帶答案詳解
- 數(shù)字化時代的學生管理與德育工作變革
- 二零二五年度倉儲設施租賃與運輸服務合同3篇
- 普洱2024年云南普洱市科學技術局城鎮(zhèn)公益性崗位工作人員招聘筆試歷年參考題庫附帶答案詳解
- 昭通2025年云南昭通巧家縣人力資源和社會保障局零星選調工作人員筆試歷年參考題庫附帶答案詳解
- 社交媒體時代孩子的行為模式與心理變化
- JT-T-496-2018公路地下通信管道高密度聚乙烯硅芯塑料管
- 人員密集場所消防安全管理培訓
- 《聚焦客戶創(chuàng)造價值》課件
- PTW-UNIDOS-E-放射劑量儀中文說明書
- JCT587-2012 玻璃纖維纏繞增強熱固性樹脂耐腐蝕立式貯罐
- 保險學(第五版)課件全套 魏華林 第0-18章 緒論、風險與保險- 保險市場監(jiān)管、附章:社會保險
- 典范英語2b課文電子書
- 員工信息登記表(標準版)
- 17~18世紀意大利歌劇探析
- 春節(jié)工地停工復工計劃安排( 共10篇)
- 何以中國:公元前2000年的中原圖景
評論
0/150
提交評論