山東省威海市榮成第十四中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
山東省威海市榮成第十四中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
山東省威海市榮成第十四中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
山東省威海市榮成第十四中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
山東省威海市榮成第十四中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省威海市榮成第十四中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.下列一元二次方程中,沒有實數(shù)根的是().A. B.C. D.2.如圖,一條公路的轉(zhuǎn)彎處是一段圓弧,點是這段弧所在圓的圓心,,點是的中點,D是AB的中點,且,則這段彎路所在圓的半徑為()A. B. C. D.3.一元二次方程的一次項系數(shù)和常數(shù)項依次是()A.-1和1 B.1和1 C.2和1 D.0和14.如圖,點M為反比例函數(shù)y=上的一點,過點M作x軸,y軸的垂線,分別交直線y=-x+b于C,D兩點,若直線y=-x+b分別與x軸,y軸相交于點A,B,則AD·BC的值是()A.3 B.2 C.2 D.5.已知點都在雙曲線上,且,則的取值范圍是()A. B. C. D.6.如圖,在中,,,,以點為圓心,長為半徑畫弧,交邊于點,則陰影區(qū)域的面積為()A. B. C. D.7.計算得()A.1 B.﹣1 C. D.8.已知平面直角坐標(biāo)系中有兩個二次函數(shù)及的圖象,將二次函數(shù)的圖象依下列哪一種平移方式后,會使得此兩圖象對稱軸重疊()A.向左平移4個單位長度 B.向右平移4個單位長度C.向左平移10個單位長度 D.向右平移10個單位長度9.從下列兩組卡片中各摸一張,所摸兩張卡片上的數(shù)字之和為5的概率是()第一組:1,2,3第二組:2,3,4A. B. C. D.10.如圖,在中,,且DE分別交AB,AC于點D,E,若,則△和△的面積之比等于()A. B. C. D.二、填空題(每小題3分,共24分)11.把方程2x2﹣1=x(x+3)化成一般形式是_________.12.若是方程的根,則的值為__________.13.如圖,已知AB是半圓O的直徑,∠BAC=20°,D是弧AC上任意一點,則∠D的度數(shù)是_________.14.有4根細木棒,它們的長度分別是2cm、4cm、6cm、8cm.從中任取3根恰好能搭成一個三角形的概率是_____.15.一個幾何體的三視圖如圖所示,根據(jù)圖中數(shù)據(jù),計算出該幾何體的表面積是__________.16.等邊三角形ABC繞著它的中心,至少旋轉(zhuǎn)______度才能與它本身重合17.建國70周年大閱兵時,以“同心共筑中國夢”為主題的群眾游行隊伍某表演方陣有8行12列,后又增加了429人,使得增加的行數(shù)和列數(shù)相同.請你計算增加了多少行.若設(shè)增加了x行,由題意可列方程為_______________________.18.用半徑為6cm,圓心角為120°的扇形圍成一個圓錐,則圓錐的底面圓半徑為_______cm.三、解答題(共66分)19.(10分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.20.(6分)已知關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,求m的取值范圍.21.(6分)已知:如圖,AB為⊙O的直徑,OD∥AC.求證:點D平分.22.(8分)如圖,在平面直角坐標(biāo)系中,過點M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點P,Q.(1)求P點的坐標(biāo);(2)若△POQ的面積為9,求k的值.23.(8分)定義:如圖1,在中,把繞點逆時針旋轉(zhuǎn)()并延長一倍得到,把繞點順時針旋轉(zhuǎn)并延長一倍得到,連接.當(dāng)時,稱是的“倍旋三角形”,邊上的中線叫做的“倍旋中線”.特例感知:(1)如圖1,當(dāng),時,則“倍旋中線”長為______;如圖2,當(dāng)為等邊三角形時,“倍旋中線”與的數(shù)量關(guān)系為______;猜想論證:(2)在圖3中,當(dāng)為任意三角形時,猜想“倍旋中線”與的數(shù)量關(guān)系,并給予證明.24.(8分)如圖,在平行四邊形ABCD中,AB<BC.(1)利用尺規(guī)作圖,在BC邊上確定點E,使點E到邊AB,AD的距離相等(不寫作法,保留作圖痕跡);(2)若BC=8,CD=5,則CE=.25.(10分)如圖,已知,,,,.(1)求和的大?。唬?)求的長26.(10分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球1個,若從中隨機摸出一個球,這個球是白球的概率為(1)求袋子中白球的個數(shù)(2)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,請用畫樹狀圖或列表的方法,求兩次都摸到白球的概率.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】分別計算出每個方程的判別式即可判斷.【題目詳解】A、∵△=4-4×1×0=4>0,∴方程有兩個不相等的實數(shù)根,故本選項不符合題意;B、∵△=16-4×1×(-1)=20>0,∴方程有兩個不相等的實數(shù)根,故本選項不符合題意;C、∵△=25-4×3×2=1>0,∴方程有兩個不相等的實數(shù)根,故本選項不符合題意;D、∵△=16-4×2×3=-8<0,∴方程沒有實數(shù)根,故本選項正確;故選:D.【題目點撥】本題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.2、A【分析】根據(jù)題意,可以推出AD=BD=20,若設(shè)半徑為r,則OD=r﹣10,OB=r,結(jié)合勾股定理可推出半徑r的值.【題目詳解】解:,,在中,,設(shè)半徑為得:,解得:,這段彎路的半徑為故選A.【題目點撥】本題主要考查垂徑定理的應(yīng)用、勾股定理的應(yīng)用,關(guān)鍵在于設(shè)出半徑為r后,用r表示出OD、OB的長度.3、A【分析】找出2x2-x+1的一次項-x、和常數(shù)項+1,再確定一次項的系數(shù)即可.【題目詳解】2x2-x+1的一次項是-x,系數(shù)是-1,常數(shù)項是1.故選A.【題目點撥】本題考查一元二次方程的一般形式.4、C【分析】設(shè)點M的坐標(biāo)為(),將代入y=-x+b中求出C點坐標(biāo),同理求出D點坐標(biāo),再根據(jù)兩點之間距離公式即可求解.【題目詳解】解:設(shè)點M的坐標(biāo)為(),將代入y=-x+b中,得到C點坐標(biāo)為(),將代入y=-x+b中,得到D點坐標(biāo)為(),∵直線y=-x+b分別與x軸,y軸相交于點A,B,∴A點坐標(biāo)(0,b),B點坐標(biāo)為(b,0),∴AD×BC=,故選:C.【題目點撥】本題考查的是一次函數(shù)及反比例函數(shù)的性質(zhì),先設(shè)出M點坐標(biāo),用M點的坐標(biāo)表示出C、D兩點的坐標(biāo)是解答此題的關(guān)鍵.5、D【分析】分別將A,B兩點代入雙曲線解析式,表示出和,然后根據(jù)列出不等式,求出m的取值范圍.【題目詳解】解:將A(-1,y1),B(2,y2)兩點分別代入雙曲線,得,,∵y1>y2,,解得,故選:D.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,解不等式.反比例函數(shù)圖象上的點的坐標(biāo)滿足函數(shù)解析式.6、C【分析】根據(jù)直角三角形的性質(zhì)得到AC=2,BC=2,∠B=60,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【題目詳解】∵在Rt△ABC中,∠ACB=90,∠A=30,AB=4,∴BC=AB=2,AC=,∠B=60,∴陰影部分的面積=S△ACB?S扇形BCD=×2×2-=,故選:C.【題目點撥】本題考查了扇形面積的計算,含30角的直角三角形的性質(zhì),正確的識別圖形是解題的關(guān)鍵7、A【分析】根據(jù)題意對原式變形后,利用同分母分式的減法法則計算,約分即可得到結(jié)果.【題目詳解】解:=1.故選:A.【題目點撥】本題考查分式的加減法,熟練掌握分式的加減法運算法則是解答本題的關(guān)鍵.8、C【分析】將二次函數(shù)解析式展開,結(jié)合二次函數(shù)的性質(zhì)找出兩個二次函數(shù)的對稱軸,二者做差后即可得出平移方向及距離.【題目詳解】解:∵=ax2+6ax-7a,=bx2-14bx-15b∴二次函數(shù)的對稱軸為直線x=-3,二次函數(shù)的對稱軸為直線x=7,∵-3-7=-10,∴將二次函數(shù)的圖象向左平移10個單位長度后,會使得此兩圖象對稱軸重疊,故選C.【題目點撥】本題考查的是二次函數(shù)的圖象與幾何變換以及二次函數(shù)的性質(zhì),熟知二次函數(shù)的性質(zhì)是解答此題的關(guān)鍵.9、D【分析】根據(jù)題意,通過樹狀圖法即可得解.【題目詳解】如下圖,畫樹狀圖可知,從兩組卡片中各摸一張,一共有9種可能性,兩張卡片上的數(shù)字之和為5的可能性有3種,則P(兩張卡片上的數(shù)字之和為5),故選:D.【題目點撥】本題屬于概率初步題,熟練掌握樹狀圖法或者列表法是解決本題的關(guān)鍵.10、B【解題分析】由DE∥BC,利用“兩直線平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,進而可得出△ADE∽△ABC,再利用相似三角形的面積比等于相似比的平方即可求出結(jié)論.【題目詳解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故選B.【題目點撥】本題考查了相似三角形的判定與性質(zhì),牢記相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、x2﹣3x﹣1=1【解題分析】2x2﹣1=x(x+3),2x2﹣1=x2+3x,則2x2﹣x2﹣3x﹣1=1,故x2﹣3x﹣1=1,故答案為x2﹣3x﹣1=1.12、1【分析】根據(jù)一元二次方程的解的定義即可求出答案.【題目詳解】由題意可知:2m2?3m+1=0,∴2m2?3m=-1∴原式=-3(2m2?3m)+2019=1.故答案為:1.【題目點撥】本題考查一元二次方程的解,解題的關(guān)鍵是正確理解一元二次方程的解的定義,本題屬于基礎(chǔ)題型.13、110°【解題分析】試題解析:∵AB是半圓O的直徑故答案為點睛:圓內(nèi)接四邊形的對角互補.14、【分析】根據(jù)題意列舉出所有4種等可能的結(jié)果數(shù),再根據(jù)題意得出能夠構(gòu)成三角形的結(jié)果數(shù),最后根據(jù)概率公式即可求解.【題目詳解】從中任取3根共有4種等可能的結(jié)果數(shù),它們?yōu)?、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一個三角形為4、6、8,所以恰好能搭成一個三角形的概率=.故答案為.【題目點撥】本題考查列表法或樹狀圖法和三角形三邊關(guān)系,解題的關(guān)鍵是通過列表法或樹狀圖法展示出所有等可能的結(jié)果數(shù)及求出構(gòu)成三角形的結(jié)果數(shù).15、【分析】根據(jù)三視圖可得出該幾何體為圓錐,圓錐的表面積=底面積+側(cè)面積(側(cè)面積將圓錐的側(cè)面積不成曲線地展開,是一個扇形.),用字母表示就是S=πr2+πrl(其中l(wèi)=母線,是圓錐的頂點到圓錐的底面圓周之間的距離).【題目詳解】解:由題意可知,該幾何體是圓錐,其中底面半徑為2,母線長為6,∴故答案為:.【題目點撥】本題考查的知識點是幾何體的三視圖以及圓錐的表面積公式,熟記圓錐的面積公式是解此題的關(guān)鍵.16、120【分析】根據(jù)等邊三角形的性質(zhì),結(jié)合圖形可以知道旋轉(zhuǎn)角度應(yīng)該等于120°.【題目詳解】解:等邊△ABC繞著它的中心,至少旋轉(zhuǎn)120度能與其本身重合.【題目點撥】本題考查旋轉(zhuǎn)對稱圖形及等邊三角形的性質(zhì).17、【分析】根據(jù)增加后的總?cè)藬?shù)減去已有人數(shù)等于429這一等量關(guān)系列出方程即可.【題目詳解】設(shè)增加了x行,則增加的列數(shù)也為x,由題意可得,.【題目點撥】本題考查了由實際問題列一元二次方程,根據(jù)題意找出等量關(guān)系是解題關(guān)鍵.18、1.【題目詳解】解:設(shè)圓錐的底面圓半徑為r,根據(jù)題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.【題目點撥】本題考查圓錐的計算,掌握公式正確計算是解題關(guān)鍵.三、解答題(共66分)19、(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標(biāo)為:P1(,),P2(,),P3(,),P4(,).【解題分析】分析:(1)利用對稱性可得點D的坐標(biāo),利用交點式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標(biāo),表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標(biāo);同理可得其他圖形中點P的坐標(biāo).詳解:(1)如圖1,設(shè)拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當(dāng)m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標(biāo)為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標(biāo)為(,)或(,);綜上所述,點P的坐標(biāo)是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應(yīng)用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.20、m>﹣1且m≠1.【分析】由關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,由一元二次方程的定義和根的判別式的意義可得m≠1且△>1,即4﹣4m?(﹣1)>1,兩個不等式的公共解即為m的取值范圍.【題目詳解】∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,∴m≠1且△>1,即4﹣4m?(﹣1)>1,解得m>﹣1,∴m的取值范圍為m>﹣1且m≠1,∴當(dāng)m>﹣1且m≠1時,關(guān)于x的一元二次方程mx2+2x﹣1=1有兩個不相等的實數(shù)根.21、見解析.【分析】連接BC,根據(jù)圓周角定理求出∠ACB=90°,求出OD⊥BC,根據(jù)垂徑定理求出即可.【題目詳解】證明:連接CB,∵AB為⊙O的直徑,∴∠ACB=90°,∵OD∥AC,∴∠OEB=∠ACB=90°,即OD⊥BC,∵OD過O,∴點D平分.【題目點撥】本題考查了圓周角定理和垂徑定理,能正確運用定理進行推理是解此題的關(guān)鍵.22、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x軸,則點P的縱坐標(biāo)為2,然后把y=2代入y=得到對應(yīng)的自變量的值,從而得到P點坐標(biāo);(2)由于S△POQ=S△OMQ+S△OMP,根據(jù)反比例函數(shù)k的幾何意義得到|k|+×|6|=9,然后解方程得到滿足條件的k的值.【題目詳解】(1)∵PQ∥x軸,∴點P的縱坐標(biāo)為2,把y=2代入y=得x=3,∴P點坐標(biāo)為(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【題目點撥】本題主要考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)k的幾何意義是解題的關(guān)鍵.23、(1)①4,②;(2),證明見解析.【分析】(1)如圖1,首先證明,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可解決問題;如圖2,過點A作,易證,根據(jù)易得結(jié)論.(2)延長到,使得,連接,易證四邊形是平行四邊形,再證明得,故可得結(jié)論.【題目詳解】(1)如圖1,∵,∴∵,∴∴∵BC=4,∴,∵D是的中點,∴AD=;如圖2,∵,,∴根據(jù)“倍旋中線”知等腰三角形,過A作,垂足為∴,,∵D是等邊三角形的邊的中點,且∴∴∴(2)結(jié)論:理由:如圖,延長到,使得,連接,∵,∴四邊形是平行四邊形∴,∵∴∵∴∴∴【題目點撥】本題屬于幾何變換綜合題,主要考查相似三角形的判定和性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定和性質(zhì)等知識的綜合運用,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.24、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論