寧夏大附屬中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
寧夏大附屬中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
寧夏大附屬中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
寧夏大附屬中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
寧夏大附屬中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

寧夏大附屬中學(xué)2024屆數(shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.已知a是方程x2+3x﹣1=0的根,則代數(shù)式a2+3a+2019的值是()A.2020 B.﹣2020 C.2021 D.﹣20212.下列圖形:①國旗上的五角星,②有一個角為60°的等腰三角形,③一個半徑為π的圓,④兩條對角線互相垂直平分的四邊形,⑤函數(shù)y=的圖象,其中既是軸對稱又是中心對稱的圖形有()A.有1個 B.有2個 C.有3個 D.有4個3.如圖,在邊長為4的菱形ABCD中,∠ABC=120°,對角線AC與BD相交于點O,以點O為圓心的圓與菱形ABCD的四邊都相切,則圖中陰影區(qū)域的面積為()A. B. C. D.4.如圖,在矩形中,在上,,交于,連結(jié),則圖中與一定相似的三角形是A. B. C. D.和5.如圖,PA、PB分別與⊙O相切于A、B兩點,點C為⊙O上一點,連AC、BC,若∠P=80°,則的∠ACB度數(shù)為()A.40° B.50° C.60° D.80°6.若一元二次方程x2﹣2x+m=0有兩個不相同的實數(shù)根,則實數(shù)m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<17.我國古代數(shù)學(xué)名著《孫子算經(jīng)》中記載了一道大題,大意是:匹馬恰好拉了片瓦,已知匹小馬能拉片瓦,匹大馬能拉片瓦,求小馬、大馬各有多少匹,若設(shè)小馬有匹,大馬有匹,依題意,可列方程組為()A. B.C. D.8.如圖,DE∥BC,BD,CE相交于O,,,則().A.6 B.9 C.12 D.159.某車間20名工人日加工零件數(shù)如表所示:日加工零件數(shù)45678人數(shù)26543這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、610.如圖,,,以下結(jié)論成立的是()A. B.C. D.以上結(jié)論都不對11.在中,,,下列結(jié)論中,正確的是()A. B.C. D.12.如圖,點D是等腰直角三角形ABC內(nèi)一點,AB=AC,若將△ABD繞點A逆時針旋轉(zhuǎn)到△ACE的位置,則∠AED的度數(shù)為()A.25° B.30° C.40° D.45°二、填空題(每題4分,共24分)13.若函數(shù)是正比例函數(shù),則__________.14.如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口圓的直徑EF長為10cm,母線OE(OF)長為10cm.在母線OF上的點A處有一塊爆米花殘渣,且FA=2cm,一只螞蟻從杯口的點E處沿圓錐表面爬行到A點,則此螞蟻爬行的最短距離________cm.15.?dāng)?shù)據(jù)3000,2998,3002,2999,3001的方差為__________.16.計算:=_____________17.一元二次方程的一個根為,另一個根為_____.18.如圖,一段拋物線記為,它與軸交于兩點、,將繞旋轉(zhuǎn)得到,交軸于,將繞旋轉(zhuǎn)得到,交軸于;如此進(jìn)行下去,直至得到,若點在第8段拋物線上,則等于__________三、解答題(共78分)19.(8分)如圖,在平面直角坐標(biāo)系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,點D與點A關(guān)于y軸對稱,tan∠ACB=,點E、F分別是線段AD、AC上的動點,(點E不與點A,D重合),且∠CEF=∠ACB.(1)求AC的長和點D的坐標(biāo);(2)求證:;(3)當(dāng)△EFC為等腰三角形時,求點E的坐標(biāo).20.(8分)先化簡,再求值,,其中m滿足:m2﹣4=1.21.(8分)某商店經(jīng)營一種小商品,進(jìn)價為2.5元,據(jù)市場調(diào)查,銷售單價是13.5元時平均每天銷售量是500件,而銷售單價每降低1元,平均每天就可以多售出100件.(1)假設(shè)每件商品降低x元,商店每天銷售這種小商品的利潤是y元,請你寫出y與x的之間的函數(shù)關(guān)系式,并注明x的取值范圍;(2)每件小商品銷售價是多少元時,商店每天銷售這種小商品的利潤最大;最大利潤是多少.(注:銷售利潤=銷售收入-購進(jìn)成本)22.(10分)已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結(jié)BE,DF.(1)求證:△DOE≌△BOF.(2)當(dāng)∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.23.(10分)(問題呈現(xiàn))阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,點M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=DB+BA.下面是運用“截長法”證明CD=DB+BA的部分證明過程.證明:如圖2,在CD上截取CG=AB,連接MA、MB、MC和MG.∵M(jìn)是的中點,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵M(jìn)D⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根據(jù)證明過程,分別寫出下列步驟的理由:①,②,③;(理解運用)如圖1,AB、BC是⊙O的兩條弦,AB=4,BC=6,點M是的中點,MD⊥BC于點D,則BD=;(變式探究)如圖3,若點M是的中點,(問題呈現(xiàn))中的其他條件不變,判斷CD、DB、BA之間存在怎樣的數(shù)量關(guān)系?并加以證明.(實踐應(yīng)用)根據(jù)你對阿基米德折弦定理的理解完成下列問題:如圖4,BC是⊙O的直徑,點A圓上一定點,點D圓上一動點,且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,求AD長.24.(10分)在平面直角坐標(biāo)系xOy中,已知拋物線G:y=ax2﹣2ax+4(a≠0).(1)當(dāng)a=1時,①拋物線G的對稱軸為x=;②若在拋物線G上有兩點(2,y1),(m,y2),且y2>y1,則m的取值范圍是;(2)拋物線G的對稱軸與x軸交于點M,點M與點A關(guān)于y軸對稱,將點M向右平移3個單位得到點B,若拋物線G與線段AB恰有一個公共點,結(jié)合圖象,求a的取值范圍.25.(12分)(1)解方程:;(2)求二次函數(shù)的圖象與坐標(biāo)軸的交點坐標(biāo).26.用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=1.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)一元二次方程的解的定義,將a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【題目詳解】解:根據(jù)題意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故選:A.【題目點撥】此題考查的是一元二次方程的解,掌握一元二次方程解的定義是解決此題的關(guān)鍵2、C【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義可得答案.【題目詳解】解:①國旗上的五角星,是軸對稱圖形,不是中心對稱圖形;②有一個角為60°的等腰三角形,是軸對稱圖形,是中心對稱圖形;③一個半徑為π的圓,是軸對稱圖形,是中心對稱圖形;④兩條對角線互相垂直平分的四邊形,是軸對稱圖形,是中心對稱圖形;⑤函數(shù)y=的圖象,不是軸對稱圖形,是中心對稱圖形;既是軸對稱又是中心對稱的圖形有3個,故選:C.【題目點撥】此題主要考查了軸對稱圖形和中心對稱圖形,以及反比例函數(shù)圖象和線段垂直平分線,關(guān)鍵是掌握軸對稱圖形和中心對稱圖形定義.3、C【分析】如圖,分別過O作OE⊥AB于E、OF⊥BC于F、OG⊥CD于G、OH⊥DA于H,則.分別求出上式中各量即可得到解答.【題目詳解】如圖,過O作OE⊥AB于E,由題意得:∠EOB=∠OAB=-∠ABO=-∠ABC=-=,AB=4∴OB=2,OA=2,OE=,BE=1,∠HOE=-=∴BD=2OB=4,AC=2OA=4,∴∴.故選C.【題目點撥】本題考查圓的綜合應(yīng)用,在審清題意的基礎(chǔ)上把圖形分割成幾塊計算后再綜合是解題關(guān)鍵.4、B【解題分析】試題分析:根據(jù)矩形的性質(zhì)可得∠A=∠D=90°,再由根據(jù)同角的余角相等可得∠AEB=∠DFE,即可得到結(jié)果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故選B.考點:矩形的性質(zhì),相似三角形的判定點評:相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中半徑常見的知識點,一般難度不大,需熟練掌握.5、B【分析】先利用切線的性質(zhì)得∠OAP=∠OBP=90°,再利用四邊形的內(nèi)角和計算出∠AOB的度數(shù),然后根據(jù)圓周角定理計算∠ACB的度數(shù).【題目詳解】解:連接OA、OB,∵PA、PB分別與⊙O相切于A、B兩點,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣80°=100°,∴∠ACB=∠AOB=×100°=50°.故選:B.【題目點撥】本題考查圓的切線,關(guān)鍵在于牢記圓切線常用輔助線:連接切點與圓心.6、D【解題分析】分析:根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,即可得出關(guān)于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.詳解:∵方程有兩個不相同的實數(shù)根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當(dāng)△>0時,方程有兩個不相等的實數(shù)根”是解題的關(guān)鍵.7、A【分析】設(shè)大馬有x匹,小馬有y匹,根據(jù)題意可得等量關(guān)系:①小馬數(shù)+大馬數(shù)=100;②小馬拉瓦數(shù)+大馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程組即可.【題目詳解】設(shè)小馬有x匹,大馬有y匹,由題意得:,故選:A.【題目點撥】本題主要考查了由實際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.8、A【解題分析】試題分析:因為DE∥BC,所以,,因為AE=3,所以AB=9,所以EB=9-3=1.故選A.考點:平行線分線段成比例定理.9、D【題目詳解】5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;把這些數(shù)從小到大排列,中位數(shù)是第10,11個數(shù)的平均數(shù),則中位數(shù)是(6+6)÷2=6;平均數(shù)是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.10、C【分析】根據(jù)已知條件結(jié)合相似三角形的判定定理逐項分析即可.【題目詳解】解:∵∠AOD=90°,設(shè)OA=OB=BC=CD=x∴AB=x,AC=x,AD=x,OC=2x,OD=3x,BD=2x,∴,∴∴.故答案為C.【題目點撥】本題主要考查了相似三角形的判定,①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.11、C【分析】直接利用銳角三角函數(shù)關(guān)系分別計算得出答案.【題目詳解】∵,,∴,∴,故選項A,B錯誤,∵,∴,故選項C正確;選項D錯誤.故選C.【題目點撥】此題主要考查了銳角三角函數(shù)關(guān)系,熟練掌握銳角三角函數(shù)關(guān)系是解題關(guān)鍵.12、D【分析】由題意可以判斷△ADE為等腰直角三角形,即可解決問題.【題目詳解】解:如圖,由旋轉(zhuǎn)變換的性質(zhì)知:∠EAD=∠CAB,AE=AD;

∵△ABC為直角三角形,

∴∠CAB=90°,△ADE為等腰直角三角形,

∴∠AED=45°,

故選:D.【題目點撥】該題考查了旋轉(zhuǎn)變換的性質(zhì)及其應(yīng)用問題;應(yīng)牢固掌握旋轉(zhuǎn)變換的性質(zhì).二、填空題(每題4分,共24分)13、【分析】根據(jù)正比例函數(shù)的定義即可得出答案.【題目詳解】∵函數(shù)是正比例函數(shù)∴-a+1=0解得:a=1故答案為1.【題目點撥】本題考查的是正比例函數(shù),屬于基礎(chǔ)題型,正比例函數(shù)的表達(dá)式為:y=kx(其中k≠0).14、cm【解題分析】試題分析:因為OE=OF=EF=10(cm),所以底面周長=10π(cm),將圓錐側(cè)面沿OF剪開展平得一扇形,此扇形的半徑OE=10(cm),弧長等于圓錐底面圓的周長10π(cm)設(shè)扇形圓心角度數(shù)為n,則根據(jù)弧長公式得:10π=,所以n=180°,即展開圖是一個半圓,因為E點是展開圖弧的中點,所以∠EOF=90°,連接EA,則EA就是螞蟻爬行的最短距離,在Rt△AOE中由勾股定理得,EA2=OE2+OA2=100+64=164,所以EA=2(cm),即螞蟻爬行的最短距離是2(cm).考點:平面展開-最短路徑問題;圓錐的計算.15、2【分析】先根據(jù)平均數(shù)的計算公式求出平均數(shù),再根據(jù)方差公式計算即可.【題目詳解】數(shù)據(jù)3000,2998,3002,2999,3001的平均數(shù)是:,方差是:,故答案為:【題目點撥】本題考查了方差的定義,熟記方差的計算順序:先差、再方、再平均.16、-1【分析】根據(jù)二次根式的性質(zhì)和負(fù)整數(shù)指數(shù)冪的運算法則進(jìn)行計算即可.【題目詳解】故答案為:-1.【題目點撥】此題主要考查了二次根式的性質(zhì)以及負(fù)整數(shù)指數(shù)冪的運算法則,熟練掌握其性質(zhì)和運算法則是解此題的關(guān)鍵.17、【分析】利用因式分解法解得方程的兩個根,即可得出另一個根的值.【題目詳解】,變形為:,∴或,解得:;,∴一元二次方程的另一個根為:.故答案為:.【題目點撥】本題考查了解一元二次方程-因式分解法.18、【分析】求出拋物線與x軸的交點坐標(biāo),觀察圖形可知第奇數(shù)號拋物線都在x軸上方、第偶數(shù)號拋物線都在x軸下方,再根據(jù)向右平移橫坐標(biāo)相加表示出拋物線的解析式,然后把點P的橫坐標(biāo)代入計算即可.【題目詳解】拋物線與x軸的交點為(0,0)、(2,0),將繞旋轉(zhuǎn)180°得到,則的解析式為,同理可得的解析式為,的解析式為的解析式為的解析式為的解析式為的解析式為∵點在拋物線上,∴故答案為【題目點撥】本題考查的是二次函數(shù)的圖像性質(zhì)與平移,能夠根據(jù)題意確定出的解析式是解題的關(guān)鍵.三、解答題(共78分)19、(1)AC=20,D(12,0);(2)見解析;(3)(8,0)或(,0).【分析】(1)在Rt△ABC中,利用三角函數(shù)和勾股定理即可求出BC、AC的長度,從而得到A點坐標(biāo),由點D與點A關(guān)于y軸對稱,進(jìn)而得到D點的坐標(biāo);(2)欲證,只需證明△AEF與△DCE相似,只需要證明兩個對應(yīng)角相等即可.在△AEF與△DCE中,易知∠CAO=∠CDE,再利用三角形的外角性質(zhì)證得∠AEF=∠DCE,問題即得解決;(3)當(dāng)△EFC為等腰三角形時,有三種情況,需要分類討論:①當(dāng)CE=EF時,此時△AEF與△DCE相似比為1,則有AE=CD,即可求出E點坐標(biāo);②當(dāng)EF=FC時,利用等腰三角形的性質(zhì)和解直角三角形的知識易求得CE,再利用(2)題的結(jié)論即可求出AE的長,進(jìn)而可求出E點坐標(biāo);③當(dāng)CE=CF時,可得E點與D點重合,這與已知條件矛盾,故此種情況不存在.【題目詳解】解:(1)∵四邊形ABCO為矩形,∴∠B=90°,∵AB=16,tan∠ACB=,∴,解得:BC=12=AO,∴AC=20,A點坐標(biāo)為(﹣12,0),∵點D與點A關(guān)于y軸對稱,∴D(12,0);(2)∵點D與點A關(guān)于y軸對稱,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴;(3)當(dāng)△EFC為等腰三角形時,有以下三種情況:①當(dāng)CE=EF時,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②當(dāng)EF=FC時,如圖1所示,過點F作FM⊥CE于M,則點M為CE中點,∴CE=2ME=2EF?cos∠CEF=2EF?cos∠ACB=.∵△AEF∽△DCE,∴,即:,解得:AE=,∴OE=AE﹣OA=,∴E(,0).③當(dāng)CE=CF時,則有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO,即此時F點與A點重合,E點與D點重合,這與已知條件矛盾.所以此種情況的點E不存在,綜上,當(dāng)△EFC為等腰三角形時,點E的坐標(biāo)是(8,0)或(,0).【題目點撥】本題綜合考查了矩形的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、相似三角形的判定和性質(zhì)、軸對稱的性質(zhì)、三角形的外角性質(zhì)以及解直角三角形等知識,熟練掌握相似三角形的判定與性質(zhì)是解題關(guān)鍵.難點在于第(3)問,當(dāng)△EFC為等腰三角形時,有三種情況,需要分類討論,注意不要漏解.20、,﹣【分析】先根據(jù)分式的混合運算順序和運算法則化簡原式,再求出符合條件的m的值,從而代入計算可得.【題目詳解】解:原式=÷==,∵m2﹣4=1且m≠2,∴m=﹣2,則原式==﹣.【題目點撥】本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運算順序和運算法則.21、(1)y=-100x2+600x+5500(0≤x≤11);(2)每件商品銷售價是10.5元時,商店每天銷售這種小商品的利潤最大,最大利潤是6400元.【分析】(1)根據(jù)等量關(guān)系“利潤=(13.5-降價-進(jìn)價)×(500+100×降價)”列出函數(shù)關(guān)系式;(2)根據(jù)(1)中的函數(shù)關(guān)系式求得利潤最大值.【題目詳解】解:(1)設(shè)降價x元時利潤最大.依題意:y=(13.5-x-2.5)(500+100x)=100(-x2+6x+55)=-100x2+600x+5500整理得:y=-100(x-3)2+6400(0≤x≤11);(2)由(1)可知,∵a=-100<0,∴當(dāng)x=3時y取最大值,最大值是6400,即降價3元時利潤最大,∴銷售單價為10.5元時,最大利潤6400元.答:銷售單價為10.5元時利潤最大,最大利潤為6400元.【題目點撥】本題考查的是函數(shù)關(guān)系式的求法以及最值的求法.22、(1)證明見解析;(2)當(dāng)∠DOE=90°時,四邊形BFED為菱形,理由見解析.【解題分析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.試題解析:(1)∵在?ABCD中,O為對角線BD的中點,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)當(dāng)∠DOE=90°時,四邊形BFDE為菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵∠EOD=90°,∴EF⊥BD,∴四邊形BFDE為菱形.考點:平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.23、(問題呈現(xiàn))相等的弧所對的弦相等;同弧所對的圓周角相等;有兩組邊及其夾角分別對應(yīng)相等的兩個三角形全等;(理解運用)1;(變式探究)DB=CD+BA;證明見解析;(實踐應(yīng)用)1或.【分析】(問題呈現(xiàn))根據(jù)圓的性質(zhì)即可求解;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(變式探究)證明△MAB≌△MGB(SAS),則MA=MG,MC=MG,又DM⊥BC,則DC=DG,即可求解;(實踐應(yīng)用)已知∠D1AC=45°,過點D1作D1G1⊥AC于點G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.如圖∠D2AC=45°,同理易得AD2=.【題目詳解】(問題呈現(xiàn))①相等的弧所對的弦相等②同弧所對的圓周角相等③有兩組邊及其夾角分別對應(yīng)相等的兩個三角形全等故答案為:相等的弧所對的弦相等;同弧所定義的圓周角相等;有兩組邊及其夾角分別對應(yīng)相等的兩個三角形全等;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案為:1;(變式探究)DB=CD+BA.證明:在DB上截去BG=BA,連接MA、MB、MC、MG,∵M(jìn)是弧AC的中點,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(實踐應(yīng)用)如圖,BC是圓的直徑,所以∠BAC=90°.因為AB=6,圓的半徑為5,所以AC=2.已知∠D1AC=45°,過點D1作D1G1⊥AC于點G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.所以AD1=1.如圖∠D2AC=45°,同理易得AD2=.所以AD的長為1或.【題目點撥】本題考查全等三角形的判定(SAS)與性質(zhì)、等腰三角形的性質(zhì)和圓心角、弦、弧,解題的關(guān)鍵是掌握全等三角形的判定(SAS)與性質(zhì)、等腰三角形的性質(zhì)和圓心角、弦、弧.24、(1)①1;②m>2或m<0;(2)﹣<a≤﹣或a=1.【分析】(1)當(dāng)a=1時,①根據(jù)二次函數(shù)一般式對稱軸公式,即可求得拋物線G的對稱軸;②根據(jù)拋物線的對稱性求得關(guān)于對稱軸的對稱點為,再利用二次函數(shù)圖像的增減性即可求得答案;(2)根據(jù)平移的性質(zhì)得出、,由題意根據(jù)函數(shù)圖象分三種情況進(jìn)行討論,即可得解.【題目詳解】解:(1)①∵當(dāng)a=1時,拋物線G:y=ax2﹣2ax+1(a≠0)為:∴拋物線G的對稱軸為;②畫出函數(shù)圖象:∵在拋物線G上有兩點(2,y1),(m,y2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論