版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題十平面解析幾何真題卷題號(hào)考點(diǎn)考向2023新課標(biāo)1卷5橢圓的性質(zhì)已知橢圓離心率求參6直線與圓的位置關(guān)系求過圓外一點(diǎn)作圓的兩條切線所成角16雙曲線的性質(zhì)求雙曲線的離心率22拋物線的方程、直線與拋物線的位置關(guān)系求軌跡方程、四邊形的周長的最值問題(求弦長)2023新課標(biāo)2卷5直線與橢圓的位置關(guān)系直線與橢圓相交時(shí)的面積問題10拋物線的方程與性質(zhì)求拋物線的方程、焦點(diǎn)弦問題15直線與圓的位置關(guān)系直線與圓相交的弦長問題21雙曲線的方程、直線與雙曲線的位置關(guān)系求雙曲線的標(biāo)準(zhǔn)方程、求動(dòng)點(diǎn)的軌跡2022新高考1卷11拋物線的標(biāo)準(zhǔn)方程、性質(zhì)拋物線的性質(zhì)、直線與拋物線的位置關(guān)系14圓與圓的位置關(guān)系求兩圓的公切線方程16直線與橢圓位置關(guān)系橢圓的定義的應(yīng)用、求橢圓中的弦長21雙曲線的標(biāo)準(zhǔn)方程、直線與雙曲線位置關(guān)系求雙曲線的標(biāo)準(zhǔn)方程、交線的斜率,三角形的面積2022新高考2卷3直線的傾斜角與斜率求直線的斜率10拋物線的定義與性質(zhì)、直線與拋物線位置關(guān)系求交線的斜率、拋物線定義與性質(zhì)的應(yīng)用15直線與圓的位置關(guān)系求直線方程、已知直線與圓的位置關(guān)系求參16直線與橢圓的位置關(guān)系求與橢圓相交的直線方程21雙曲線的標(biāo)準(zhǔn)方程、直線與雙曲線的位置關(guān)系求雙曲線的標(biāo)準(zhǔn)方程、求點(diǎn)的軌跡方程、判斷直線的位置關(guān)系2021新高考1卷5橢圓的定義求橢圓上的點(diǎn)到兩焦點(diǎn)距離積的最值11直線與圓的位置關(guān)系求點(diǎn)到直線的距離、直線與圓相切的位置關(guān)系中的最值問題14拋物線的定義與性質(zhì)求拋物線的準(zhǔn)線方程21雙曲線的標(biāo)準(zhǔn)方程、直線與雙曲線的位置關(guān)系求點(diǎn)的軌跡方程、直線與雙曲線位置關(guān)系中的定值問題(斜率之和為定值)2021新高考2卷3拋物線的性質(zhì)、點(diǎn)到直線的距離求拋物線焦點(diǎn)坐標(biāo)11直線與圓的位置關(guān)系判斷直線與圓的位置關(guān)系13雙曲線的性質(zhì)求雙曲線的漸近線方程20橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系求橢圓的標(biāo)準(zhǔn)方程、求橢圓的弦與圓相切時(shí)的弦長2020新高考1卷9圓錐曲線的方程與性質(zhì)由參數(shù)范圍判斷圓錐曲線的類型及相關(guān)性質(zhì)13直線與拋物線的位置關(guān)系求拋物線的弦長22橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系求橢圓的方程、直線與橢圓位置關(guān)系中的定點(diǎn)問題2020新高考2卷10圓錐曲線的方程與性質(zhì)由參數(shù)范圍判斷圓錐曲線的類型及相關(guān)性質(zhì)14直線與拋物線的位置關(guān)系求拋物線的弦長【2023年真題】1.(2023·新課標(biāo)=1\*ROMANI卷第5題)設(shè)橢圓SKIPIF1<0,SKIPIF1<0的離心率分別為SKIPIF1<0,SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2023·新課標(biāo)=1\*ROMANI卷第6題)過點(diǎn)SKIPIF1<0與圓SKIPIF1<0相切的兩條直線的夾角為SKIPIF1<0則SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03(2023·新課標(biāo)=2\*ROMANII卷第5題)已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與C交于A,B兩點(diǎn),若SKIPIF1<0面積是SKIPIF1<0面積的2倍,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2023·新課標(biāo)=2\*ROMANII卷第10題)(多選)設(shè)O為坐標(biāo)原點(diǎn),直線SKIPIF1<0過拋物線SKIPIF1<0的焦點(diǎn),且與C交于M,N兩點(diǎn),l為C的準(zhǔn)線,則(
)A.SKIPIF1<0 B.SKIPIF1<0
C.以MN為直徑的圓與l相切 D.SKIPIF1<0為等腰三角形5.(2023·新課標(biāo)=1\*ROMANI卷第16題)已知雙曲線SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,點(diǎn)A在C上,點(diǎn)B在y軸上,SKIPIF1<0,SKIPIF1<0,則C的離心率為__________.6.(2023·新課標(biāo)=2\*ROMANII卷第15題)已知直線SKIPIF1<0與SKIPIF1<0交于A、B兩點(diǎn),寫出滿足“SKIPIF1<0面積為SKIPIF1<0”的m的一個(gè)值__________7.(2023·新課標(biāo)=1\*ROMANI卷第22題)在直角坐標(biāo)系xOy中,點(diǎn)P到x軸的距離等于點(diǎn)P到點(diǎn)的距離,記動(dòng)點(diǎn)P的軌跡為SKIPIF1<0SKIPIF1<0求W的方程;SKIPIF1<0已知矩形ABCD有三個(gè)頂點(diǎn)在W上,證明:矩形ABCD的周長大于SKIPIF1<08.(2023·新課標(biāo)=2\*ROMANII卷第21題)已知雙曲線C的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為SKIPIF1<0,離心率為SKIPIF1<0SKIPIF1<0求C的方程:SKIPIF1<0記C的左、右頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線與C的左支交于M,N兩點(diǎn),M在第二象限,直線SKIPIF1<0與SKIPIF1<0交于點(diǎn)P,證明:點(diǎn)P在定直線上.【2022年真題】9.(2022·新高考II卷第3題)圖1是中國古代建筑中的舉架結(jié)構(gòu),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是桁,相鄰桁的水平距離稱為步,垂直距離稱為舉,圖2是某古代建筑屋頂截面的示意圖.其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是舉,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是相等的步,相鄰桁的舉步之比分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成公差為SKIPIF1<0的等差數(shù)列,且直線OA的斜率為SKIPIF1<0,則SKIPIF1<0(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2022·新高考I卷第11題)(多選)已知O為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,過點(diǎn)SKIPIF1<0的直線交C于P,Q兩點(diǎn),則(
)A.C的準(zhǔn)線為SKIPIF1<0 B.直線AB與C相切
C. D.SKIPIF1<011.(2022·新高考II卷第10題)(多選)已知O為坐標(biāo)原點(diǎn),過拋物線SKIPIF1<0的焦點(diǎn)F的直線與C交于A,B兩點(diǎn),點(diǎn)A在第一象限,點(diǎn)SKIPIF1<0,若SKIPIF1<0,則(
)A.直線AB的斜率為SKIPIF1<0 B.SKIPIF1<0
C.SKIPIF1<0 D.SKIPIF1<012.(2022·新高考I卷第14題)寫出與圓SKIPIF1<0和SKIPIF1<0都相切的一條直線的方程__________.13.(2022·新高考I卷第16題)已知橢圓SKIPIF1<0,C的上頂點(diǎn)為A,兩個(gè)焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0,過SKIPIF1<0且垂直于SKIPIF1<0的直線與C交于D,E兩點(diǎn),SKIPIF1<0,則SKIPIF1<0的周長是__________.14.(2022·新高考II卷第15題)設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,直線AB關(guān)于直線SKIPIF1<0的對(duì)稱直線為l,已知l與圓SKIPIF1<0有公共點(diǎn),則a的取值范圍為__________.15.(2022·新高考II卷第16題)已知直線l與橢圓SKIPIF1<0在第一象限交于A,B兩點(diǎn),l與x軸y軸分別相交于M,N兩點(diǎn),且SKIPIF1<0,SKIPIF1<0,則直線l的方程為__________.16.(2022·新高考I卷第21題)已知點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,直線l交C于P,Q兩點(diǎn),直線SKIPIF1<0的斜率之和為SKIPIF1<0SKIPIF1<0求l的斜率;SKIPIF1<0若SKIPIF1<0,求SKIPIF1<0的面積.17.(2022·新高考II卷第21題)設(shè)雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,漸近線方程為SKIPIF1<0
SKIPIF1<0求C的方程;
SKIPIF1<0經(jīng)過F的直線與C的漸近線分別交于A,B兩點(diǎn),點(diǎn)SKIPIF1<0,SKIPIF1<0在C上,且SKIPIF1<0,SKIPIF1<0過P且斜率為SKIPIF1<0的直線與過Q且斜率為SKIPIF1<0的直線交于點(diǎn)M,從下面三個(gè)條件①②③中選擇兩個(gè)條件,證明另一個(gè)條件成立:①SKIPIF1<0在AB上;②SKIPIF1<0③SKIPIF1<0【2021年真題】18.(2021·新高考I卷第5題)已知SKIPIF1<0,SKIPIF1<0是橢圓C:SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)M在C上,則SKIPIF1<0的最大值為(
)A.13 B.12 C.9 D.619.(2021·新高考II卷第3題)拋物線SKIPIF1<0的焦點(diǎn)到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.SKIPIF1<0 D.420.(2021·新高考I卷第11題)(多選)已知點(diǎn)P在圓SKIPIF1<0上,點(diǎn)SKIPIF1<0,SKIPIF1<0,則(
)A.點(diǎn)P到直線AB的距離小于10 B.點(diǎn)P到直線AB的距離大于2
C.當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0 D.當(dāng)SKIPIF1<0最大時(shí),SKIPIF1<021.(2021·新高考II卷第11題)(多選)已知直線SKIPIF1<0與圓SKIPIF1<0,點(diǎn)SKIPIF1<0,則下列說法正確的是(
)A.若點(diǎn)A在圓C上,則直線l與圓C相切 B.若點(diǎn)A在圓C內(nèi),則直線l與圓C相離
C.若點(diǎn)A在圓C外,則直線l與圓C相離 D.若點(diǎn)A在直線l上,則直線l與圓C相切22.(2021·新高考I卷第14題)已知O為坐標(biāo)原點(diǎn),拋物線SKIPIF1<0的焦點(diǎn)為F,P為C上一點(diǎn),PF與x軸垂直,Q為x軸上一點(diǎn),且SKIPIF1<0若SKIPIF1<0,則C的準(zhǔn)線方程為__________.23.(2021·新高考II卷第13題)已知雙曲線SKIPIF1<0的離心率為2,則該雙曲線的漸近線方程為__________.24.(2021·新高考I卷第21題)在平面直角坐標(biāo)系xOy中,已知點(diǎn)SKIPIF1<0,SKIPIF1<0,點(diǎn)M滿足SKIPIF1<0記M的軌跡為SKIPIF1<0SKIPIF1<0求C的方程;SKIPIF1<0設(shè)點(diǎn)T在直線SKIPIF1<0上,過T的兩條直線分別交C于A,B兩點(diǎn)和P,Q兩點(diǎn),且SKIPIF1<0,求直線AB的斜率與直線PQ的斜率之和.25.(2021·新高考II卷第20題)已知橢圓C的方程為SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,且離心率為SKIPIF1<0SKIPIF1<0求橢圓C的方程;SKIPIF1<0設(shè)M,N是橢圓C上的兩點(diǎn),直線MN與曲線SKIPIF1<0相切.證明:M,N,F(xiàn)三點(diǎn)共線的充要條件是SKIPIF1<0【2020年真題】26.(2020·新高考I卷第9題、II卷第10題)(多選)已知曲線SKIPIF1<0,則(
)A.若SKIPIF1<0,則C是橢圓,其焦點(diǎn)在y軸上
B.若SKIPIF1<0,則C是圓,其半徑為SKIPIF1<0
C.若SKIPIF1<0,則C是雙曲線,其漸近線方程為SKIPIF1<0
D.若SKIPIF1<0,SKIPIF1<0,則C是兩條直線27.(2020·新高考I卷第13題、II卷第14題)斜率為SKIPIF1<0的直線過拋物線SKIPIF1<0SKIPIF1<0SKIPIF1<0的焦點(diǎn),且與C交于A,B兩點(diǎn),則SKIPIF1<0__________.28.(2020·新高考I卷第22題)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,且過點(diǎn)SKIPIF1<0SKIPIF1<0求C的方程;SKIPIF1<0點(diǎn)M,N在C上,且SKIPIF1<0,SKIPIF1<0,D為垂足.證明:存在定點(diǎn)Q,使得SKIPIF1<0為定值.29.(2020·新高考II卷第21題)已知橢圓C:SKIPIF1<0過點(diǎn)SKIPIF1<0,點(diǎn)A為其左頂點(diǎn),且AM的斜率為SKIPIF1<0SKIPIF1<0求C的方程;SKIPIF1<0點(diǎn)N為橢圓上任意一點(diǎn),求SKIPIF1<0的面積的最大值.
【答案解析】1.(2023·新課標(biāo)=1\*ROMANI卷第5題)解:易得,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0故選SKIPIF1<02.(2023·新課標(biāo)=1\*ROMANI卷第6題)解:SKIPIF1<0,故圓心SKIPIF1<0,記SKIPIF1<0,設(shè)切點(diǎn)為M,SKIPIF1<0,,故,,,SKIPIF1<0,故選B3(2023·新課標(biāo)=2\*ROMANII卷第5題)解:SKIPIF1<0到AB的距離SKIPIF1<0,SKIPIF1<0到AB距離SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0直線與橢圓相交,消y可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,選SKIPIF1<04.(2023·新課標(biāo)=2\*ROMANII卷第10題)(多選)解:因?yàn)镾KIPIF1<0過拋物線SKIPIF1<0的焦點(diǎn),則焦點(diǎn)SKIPIF1<0,SKIPIF1<0,A選項(xiàng)正確;拋物線SKIPIF1<0,MN的傾斜角SKIPIF1<0,SKIPIF1<0,B選項(xiàng)錯(cuò)誤;以MN為直徑的圓一定與準(zhǔn)線相切,C選項(xiàng)正確;聯(lián)立,解得,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0不是等腰三角形,D選項(xiàng)錯(cuò)誤;故選:SKIPIF1<05.(2023·新課標(biāo)=1\*ROMANI卷第16題)解:SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0由對(duì)稱性知SKIPIF1<0又SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0由雙曲線的定義知,,故SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0解得:SKIPIF1<0,故C的離心率為SKIPIF1<06.(2023·新課標(biāo)=2\*ROMANII卷第15題)解:由題知SKIPIF1<0的圓心為SKIPIF1<0,半徑為2,設(shè)圓心到直線的距離為d,則SKIPIF1<0,于是,SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,若取SKIPIF1<0,則SKIPIF1<0,此時(shí)有SKIPIF1<0,解得SKIPIF1<0,若取SKIPIF1<0,則SKIPIF1<0,此時(shí)有SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0答案不唯一SKIPIF1<07.(2023·新課標(biāo)=1\*ROMANI卷第22題)解:SKIPIF1<0設(shè)點(diǎn)P的坐標(biāo)為SKIPIF1<0,由題意得,整理,得SKIPIF1<0,故W的方程為:SKIPIF1<0SKIPIF1<0設(shè)矩形的三個(gè)頂點(diǎn),,在軌跡W上,且SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)矩形的周長為C,由對(duì)稱性不妨設(shè)SKIPIF1<0,SKIPIF1<0,則當(dāng)且僅當(dāng)時(shí)等號(hào)成立SKIPIF1<0,令SKIPIF1<0則令SKIPIF1<0得SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以,所以SKIPIF1<0,即SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立SKIPIF1<0等號(hào)不能同時(shí)成立,所以SKIPIF1<0【解析】本題考查軌跡方程的求解,直線與圓錐曲線的位置關(guān)系,弦長的求解,利用導(dǎo)數(shù)求最值,屬于壓軸題.(1)設(shè)出點(diǎn)P的坐標(biāo),由距離公式即可求解;(2)由軌跡方程設(shè)出三點(diǎn)坐標(biāo),由對(duì)稱性結(jié)合弦長公式表示出矩形的周長,利用導(dǎo)數(shù)求最值即可求解.8.(2023·新課標(biāo)=2\*ROMANII卷第21題)解:SKIPIF1<0由題意可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故C的方程為SKIPIF1<0SKIPIF1<0設(shè)直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由SKIPIF1<0知SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0聯(lián)立得:SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,得SKIPIF1<0則有SKIPIF1<0,SKIPIF1<0;代入SKIPIF1<0式可得SKIPIF1<0,解得SKIPIF1<0,故點(diǎn)P在定直線SKIPIF1<0上.【解析】本題考查雙曲線的標(biāo)準(zhǔn)方程、雙曲線的離心率、雙曲線的定直線問題,計(jì)算量較大,屬于較難題.SKIPIF1<0根據(jù)題意得出a,b的值,即可求出結(jié)果;SKIPIF1<0先設(shè)出直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,,可得到SKIPIF1<0,SKIPIF1<0,聯(lián)立可得SKIPIF1<0式.再將將SKIPIF1<0代入雙曲線方程,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0再結(jié)合SKIPIF1<0式,即可得定直線.即可證明點(diǎn)P在定直線上.9.(2022·新高考II卷第3題)解:設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0
由題意得SKIPIF1<0,SKIPIF1<0,
且SKIPIF1<0,
解得SKIPIF1<010.(2022·新高考I卷第11題)(多選)解:點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,
即SKIPIF1<0,所以準(zhǔn)線為SKIPIF1<0,所以A錯(cuò);
直線SKIPIF1<0代入SKIPIF1<0,
得:SKIPIF1<0,SKIPIF1<0,
所以AB與C相切,故B正確.
由題知直線PQ的斜率一定存在,則可設(shè)直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
則SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,
此時(shí)SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0
SKIPIF1<0,故C正確;
SKIPIF1<0SKIPIF1<0,故D正確.11.(2022·新高考II卷第10題)(多選)解:選項(xiàng)SKIPIF1<0設(shè)FM中點(diǎn)為N,則SKIPIF1<0,所以
SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0
選項(xiàng)SKIPIF1<0所以
SKIPIF1<0所以SKIPIF1<0
選項(xiàng)SKIPIF1<0
選項(xiàng)SKIPIF1<0由選項(xiàng)A,B知SKIPIF1<0,SKIPIF1<0,所以
SKIPIF1<0,所以SKIPIF1<0為鈍角;
又SKIPIF1<0,所以SKIPIF1<0為鈍角,
所以SKIPIF1<012.(2022·新高考I卷第14題)解:方法SKIPIF1<0顯然直線的斜率不為0,不妨設(shè)直線方程為SKIPIF1<0,
于是SKIPIF1<0化簡得SKIPIF1<0①,
SKIPIF1<0化簡得,SKIPIF1<0,于是SKIPIF1<0或SKIPIF1<0,
再結(jié)合①解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,
所以直線方程有三條,分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0填一條即可SKIPIF1<0
方法SKIPIF1<0設(shè)圓SKIPIF1<0的圓心SKIPIF1<0,半徑為SKIPIF1<0,
圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,
則SKIPIF1<0,因此兩圓外切,
由圖像可知,共有三條直線符合條件,顯然SKIPIF1<0符合題意;
又由方程SKIPIF1<0和SKIPIF1<0相減可得方程SKIPIF1<0,即為過兩圓公共切點(diǎn)的切線方程,
又易知兩圓圓心所在直線OC的方程為SKIPIF1<0,
直線OC與直線SKIPIF1<0的交點(diǎn)為SKIPIF1<0,設(shè)過該點(diǎn)的直線為SKIPIF1<0,則,解得SKIPIF1<0,
從而該切線的方程為SKIPIF1<0填一條即可SKIPIF1<013.(2022·新高考I卷第16題)解:由橢圓離心率為SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,
則橢圓C:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
易得SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0,
可解得SKIPIF1<0與DE的交點(diǎn)SKIPIF1<0,
故直線DE垂直平分SKIPIF1<0,即,,
又
,
SKIPIF1<0,
所以SKIPIF1<0的周長14.(2022·新高考II卷第15題)解:因?yàn)镾KIPIF1<0,所以AB關(guān)于直線SKIPIF1<0的對(duì)稱直線為SKIPIF1<0,所以,整理可得SKIPIF1<0解得SKIPIF1<0
15.(2022·新高考II卷第16題)解:取AB的中點(diǎn)為E,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0
可得SKIPIF1<0,即SKIPIF1<0設(shè)直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0,即SKIPIF1<016.(2022·新高考I卷第21題)解:SKIPIF1<0將點(diǎn)A代入雙曲線方程得SKIPIF1<0,化簡得SKIPIF1<0得:
SKIPIF1<0,故雙曲線方程為SKIPIF1<0
由題顯然直線l的斜率存在,設(shè)SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則聯(lián)立直線與雙曲線得:
SKIPIF1<0,SKIPIF1<0,
故SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,
化簡得:SKIPIF1<0,
故SKIPIF1<0,
即SKIPIF1<0,而直線l不過A點(diǎn),
故l的斜率SKIPIF1<0
SKIPIF1<0設(shè)直線AP的傾斜角為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,
由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,
聯(lián)立SKIPIF1<0,及SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,
同理,SKIPIF1<0,SKIPIF1<0,
故SKIPIF1<0,SKIPIF1<0
而SKIPIF1<0,SKIPIF1<0,
由SKIPIF1<0,得SKIPIF1<0,
故SKIPIF1<0
17.(2022·新高考II卷第21題)解:SKIPIF1<0由題意可得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0
因此C的方程為SKIPIF1<0
SKIPIF1<0設(shè)直線PQ的方程為SKIPIF1<0,將直線PQ的方程代入C的方程得SKIPIF1<0,
則SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0
設(shè)點(diǎn)M的坐標(biāo)為SKIPIF1<0,則
兩式相減,得SKIPIF1<0,而SKIPIF1<0,
故SKIPIF1<0,解得SKIPIF1<0
兩式相加,得SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0
因此,點(diǎn)M的軌跡為直線SKIPIF1<0,其中k為直線PQ的斜率.
若選擇①②SKIPIF1<0
設(shè)直線AB的方程為SKIPIF1<0,并設(shè)A的坐標(biāo)為SKIPIF1<0,B的坐標(biāo)為SKIPIF1<0
則,解得SKIPIF1<0,SKIPIF1<0
同理可得SKIPIF1<0,SKIPIF1<0
此時(shí)SKIPIF1<0,SKIPIF1<0
而點(diǎn)M的坐標(biāo)滿足SKIPIF1<0,
解得SKIPIF1<0,SKIPIF1<0,
故M為AB的中點(diǎn),即SKIPIF1<0
若選擇①③SKIPIF1<0
當(dāng)直線AB的斜率不存在時(shí),點(diǎn)M即為點(diǎn)SKIPIF1<0,此時(shí)M不在直線SKIPIF1<0上,矛盾.
故直線AB的斜率存在,設(shè)直線AB的方程為SKIPIF1<0,
并設(shè)A的坐標(biāo)為SKIPIF1<0,B的坐標(biāo)為SKIPIF1<0
則,解得SKIPIF1<0,SKIPIF1<0
同理可得SKIPIF1<0,SKIPIF1<0
此時(shí)SKIPIF1<0,SKIPIF1<0
由于點(diǎn)M同時(shí)在直線SKIPIF1<0上,故SKIPIF1<0,解得SKIPIF1<0因此SKIPIF1<0
若選擇②③SKIPIF1<0
設(shè)直線AB的方程為SKIPIF1<0,并設(shè)A的坐標(biāo)為SKIPIF1<0,B的坐標(biāo)為SKIPIF1<0
則解得SKIPIF1<0,SKIPIF1<0
同理可得SKIPIF1<0,SKIPIF1<0,
設(shè)AB的中點(diǎn)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0
由于SKIPIF1<0,故M在AB的垂直平分線上,即點(diǎn)M在直線SKIPIF1<0上.
將該直線與SKIPIF1<0聯(lián)立,解得SKIPIF1<0,SKIPIF1<0,
即點(diǎn)M恰為AB中點(diǎn),故點(diǎn)而在直線AB上.
18.(2021·新高考I卷第5題)解:由SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)M在C上,得SKIPIF1<0
所以
當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號(hào),即SKIPIF1<0有最大值SKIPIF1<0故選SKIPIF1<019.(2021·新高考II卷第3題)解:拋物線的焦點(diǎn)坐標(biāo)為SKIPIF1<0,其到直線SKIPIF1<0的距離為SKIPIF1<0,解得SKIPIF1<0舍去SKIPIF1<0故選SKIPIF1<020.(2021·新高考I卷第11題)(多選)解:由點(diǎn)SKIPIF1<0,SKIPIF1<0,可得直線AB的方程為SKIPIF1<0則圓心SKIPIF1<0到直線的距離為SKIPIF1<0,故P到直線AB的最大距離為SKIPIF1<0,最小距離SKIPIF1<0,所以A正確,B錯(cuò)誤.由題意可知,當(dāng)直線PB與圓相切時(shí),SKIPIF1<0最大或最小,由于圓心到B的距離為,此時(shí),故C,D都正確.故選SKIPIF1<021.(2021·新高考II卷第11題)(多選)解:圓心到直線l的距離SKIPIF1<0,若點(diǎn)在圓C上,則SKIPIF1<0,所以SKIPIF1<0,則直線l與圓C相切,故A正確;若點(diǎn)在圓C內(nèi),則SKIPIF1<0,所以SKIPIF1<0,則直線l與圓C相離,故B正確;若點(diǎn)在圓C外,則SKIPIF1<0,所以SKIPIF1<0,則直線l與圓C相交,故C錯(cuò)誤;若點(diǎn)在直線l上,則SKIPIF1<0即SKIPIF1<0,所以,直線l與圓C相切,故D正確.故選SKIPIF1<022.(2021·新高考I卷第14題)解:SKIPIF1<0與x軸垂直,設(shè)點(diǎn)P在第一象限,SKIPIF1<0點(diǎn)P坐標(biāo)為,又SKIPIF1<0,SKIPIF1<0∽SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,則準(zhǔn)線方程為SKIPIF1<0,故答案為SKIPIF1<023.(2021·新高考II卷第13題)解:因?yàn)殡p曲線的離心率為2,所以SKIPIF1<0,
所以SKIPIF1<0,
所以該雙曲線的漸近線方程為SKIPIF1<0故答案為:SKIPIF1<024.(2021·新高考I卷第21題)解:SKIPIF1<0由題意知點(diǎn)M的軌跡C是焦點(diǎn)在x軸上的雙曲線的右支,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的方程為SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,設(shè)直線AB的方程為,SKIPIF1<0,SKIPIF1<0,由,得,整理得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,同理可得,由SKIPIF1<0,得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<025.(2021·新高考II卷第20題)SKIPIF1<0解:由題意,橢圓半焦距SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以橢圓方程為SKIPIF1<0;SKIPIF1<0證明:由SKIPIF1<0得,曲線為SKIPIF1<0,當(dāng)直線MN的斜率不存在時(shí),直線SKIPIF1<0,不滿足M,N,F(xiàn)三點(diǎn)共線;當(dāng)直線MN的斜率存在時(shí),設(shè)SKIPIF1<0,必要性:
若M,N,F(xiàn)三點(diǎn)共線,可設(shè)直線SKIPIF1<0即SKIPIF1<0,由直線MN與曲線SKIPIF1<0相切可得,解得SKIPIF1<0,聯(lián)立可得SKIPIF1<0,SKIPIF1<0,
所以SKIPIF1<0,所以,所以必要性成立;充分性:
設(shè)直線即SKIPIF1<0,由直線MN與曲線SKIPIF1<0相切可得,所以SKIPIF1<0,聯(lián)立可得,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,化簡得,所以SKIPIF1<0,所以或,
所以直線SKIPIF1<0或SKIPIF1<0,所以直線MN過點(diǎn)SKIPIF1<0,M,N,F(xiàn)三點(diǎn)共線,充分性成立;所以M,N,F(xiàn)三點(diǎn)共線的充要條件是SKIPIF1<0【2020年真題】26.(2020·新高考I卷第9題、II卷第10題)(多選)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0可化為SKIPIF1<0,
若SKIPIF1<0,則SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 綜合技術(shù)培訓(xùn)服務(wù)合同
- 貸款合同權(quán)益保障
- 咨詢公司合同模板
- 電腦系統(tǒng)維護(hù)合同
- 架線施工勞務(wù)分包合同范例
- 無敵鐵門防盜門購銷合同
- 法律咨詢服務(wù)協(xié)議格式范式
- 料場(chǎng)租賃合同模板
- 不銹鋼水管購銷合同
- 工程合同補(bǔ)充協(xié)議的終止規(guī)定
- 重慶育才中學(xué)教育集團(tuán) 2024-2025學(xué)年上學(xué)期八年級(jí)期中考試數(shù)學(xué)試題
- 老年人護(hù)理安全風(fēng)險(xiǎn)管理
- 零信任環(huán)境下的網(wǎng)絡(luò)安全風(fēng)險(xiǎn)管理優(yōu)化
- (完整版)信息安全課件
- 2024年“七五”普法考試題庫及答案(共100題)
- 風(fēng)電、光伏技術(shù)標(biāo)準(zhǔn)清單
- 2024年官方獸醫(yī)牧運(yùn)通考試題庫(含答案)
- 社區(qū)教育志愿者培訓(xùn)教材
- 護(hù)理安全管理課件
- 北京郵電大學(xué)《自然語言處理課程設(shè)計(jì)》2022-2023學(xué)年期末試卷
- 2024-2025學(xué)年新教材高中化學(xué) 第2章 分子結(jié)構(gòu)與性質(zhì) 第1節(jié) 共價(jià)鍵說課稿 新人教版選擇性必修2
評(píng)論
0/150
提交評(píng)論