海南省等八校2024屆高一上數(shù)學期末經(jīng)典試題含解析_第1頁
海南省等八校2024屆高一上數(shù)學期末經(jīng)典試題含解析_第2頁
海南省等八校2024屆高一上數(shù)學期末經(jīng)典試題含解析_第3頁
海南省等八校2024屆高一上數(shù)學期末經(jīng)典試題含解析_第4頁
海南省等八校2024屆高一上數(shù)學期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

海南省等八校2024屆高一上數(shù)學期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,條件:,條件:,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知向量=(1,2),=(2,x),若⊥,則|2+|=()A. B.4C.5 D.3.,則A.1 B.2C.26 D.104.已知是函數(shù)的反函數(shù),則的值為()A.0 B.1C.10 D.1005.已知函數(shù),若,,互不相等,且,則的取值范圍是()A. B.C. D.6.函數(shù)的零點在A. B.C. D.7.已知過點和的直線與斜率為一2的直線平行,則m的值是A.-8 B.0C.2 D.108.長方體中,,,則直線與平面ABCD所成角的大小A. B.C. D.9.盡管目前人類還無法精準預(yù)報地震,但科學家通過研究,已經(jīng)對地震有所了解,例如,地震釋放出的能量E(單位:焦耳)與地震里氏震級之間的關(guān)系式為.年月日,日本東北部海域發(fā)生里氏級地震,它所釋放出來的能量是年月日我國四川九寨溝縣發(fā)生里氏級地震的()A.倍 B.倍C.倍 D.倍10.函數(shù)的定義域是()A. B.C. D.(0,4)二、填空題:本大題共6小題,每小題5分,共30分。11.已知集合,,則=______12.函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍_______.13.在《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱之為鱉臑(bienao).已知在鱉臑中,平面,,則該鱉臑的外接球與內(nèi)切球的表面積之和為____14.兩圓x2+y2+6x-4y+9=0和x2+y2-6x+12y-19=0的位置關(guān)系是___________________.15.,,則的值為__________.16.第24屆冬季奧林匹克運動會(TheXXIVOlympicWinterGames),即2022年北京冬季奧運會,計劃于2022年2月4日星期五開幕,2月20日星期日閉幕.北京冬季奧運會設(shè)7個大項,15個分項,109個小項.某大學青年志愿者協(xié)會接到組委會志愿者服務(wù)邀請,計劃從大一至大三青年志愿者中選出24名志愿者,參與北京冬奧會高山滑雪比賽項目的服務(wù)工作.已知大一至大三的青年志愿者人數(shù)分別為50,40,30,則按分層抽樣的方法,在大一青年志愿者中應(yīng)選派__________人.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在①函數(shù)的圖象向右平移個單位長度得到的圖像,圖像關(guān)于對稱;②函數(shù)這兩個條件中任選一個,補充在下而問題中,并解答.已知______,函數(shù)的圖象相鄰兩條對稱軸之間的距離為.(1)若在上的值域為,求a的取值范圍;(2)求函數(shù)在上的單調(diào)遞增區(qū)間.18.(1)已知,先化簡f(α),再求f()的值;(2)若已知sin(-x)=,且0<x<,求sin的值.19.如圖,已知直線//,是直線、之間的一定點,并且點到直線、的距離分別為1、2,垂足分別為E、D,是直線上一動點,作,且使與直線交于點.試選擇合適的變量分別表示三角形的直角邊和面積S,并求解下列問題:(1)若為等腰三角形,求和的長;(2)求面積S最小值.20.設(shè)函數(shù)(1)若不等式解集,求、的值;(2)若,在上恒成立,求實數(shù)的取值范圍21.已知函數(shù)(a為實常數(shù))(1)若,設(shè)在區(qū)間的最小值為,求的表達式:(2)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)a的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】分別求兩個命題下的集合,再根據(jù)集合關(guān)系判斷選項.【題目詳解】,則,,則,因為,所以是充分必要條件.故選:C2、C【解題分析】根據(jù)求出x的值,再利用向量的運算求出的坐標,最后利用模長公式即可求出答案【題目詳解】因為,所以解得,所以,因此,故選C【題目點撥】本題主要考查向量的坐標預(yù)算以及模長求解,還有就是關(guān)于向量垂直的判定與性質(zhì)3、B【解題分析】根據(jù)題意,由函數(shù)的解析式可得,進而計算可得答案.【題目詳解】根據(jù)題意,,則;故選B.【題目點撥】本題考查分段函數(shù)函數(shù)值的計算,注意分析函數(shù)的解析式.解決分段函數(shù)求值問題的策略:(1)在求分段函數(shù)的值f(x0)時,一定要首先判斷x0屬于定義域的哪個子集,然后再代入相應(yīng)的關(guān)系式;(2)分段函數(shù)是指自變量在不同的取值范圍內(nèi),其對應(yīng)法則也不同的函數(shù),分段函數(shù)是一個函數(shù),而不是多個函數(shù);分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集,故解分段函數(shù)時要分段解決;(3)求f(f(f(a)))的值時,一般要遵循由里向外逐層計算的原則.4、A【解題分析】根據(jù)給定條件求出的解析式,再代入求函數(shù)值作答.【題目詳解】因是函數(shù)的反函數(shù),則,,所以的值為0.故選:A5、A【解題分析】畫出圖像,利用正弦函數(shù)的對稱性求出,再結(jié)合的范圍即可求解.【題目詳解】不妨設(shè),畫出的圖像,即與有3個交點,由圖像可知,關(guān)于對稱,即,令,解得,所以,故,.故選:A.6、B【解題分析】利用零點的判定定理檢驗所給的區(qū)間上兩個端點的函數(shù)值,當兩個函數(shù)值符號相反時,這個區(qū)間就是函數(shù)零點所在的區(qū)間.【題目詳解】函數(shù)定義域為,,,,,因為,根據(jù)零點定理可得,在有零點,故選B.【題目點撥】本題考查函數(shù)零點的判定定理,本題解題的關(guān)鍵是看出函數(shù)在所給的區(qū)間上對應(yīng)的函數(shù)值的符號,此題是一道基礎(chǔ)題.7、A【解題分析】由題意可知kAB==-2,所以m=-8.故選A8、B【解題分析】連接,根據(jù)長方體的性質(zhì)和線面角的定義可知:是直線與平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用銳角三角函數(shù)知識可以求出的大小.【題目詳解】連接,在長方體中,顯然有平面ABCD,所以是直線與平面ABCD所成角,在底面ABCD中,,在中,,故本題選B.【題目點撥】本題考查了線面角的求法,考查了數(shù)學運算能力.9、C【解題分析】設(shè)里氏級和級地震釋放出的能量分別為和,可得出,利用對數(shù)的運算性質(zhì)可求得的值,即可得解.【題目詳解】設(shè)里氏級和級地震釋放出的能量分別為和,由已知可得,則,故故選:C.10、C【解題分析】根據(jù)對數(shù)函數(shù)的單調(diào)性,結(jié)合二次根式的性質(zhì)進行求解即可.【題目詳解】由,故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、{-1,1,2};【解題分析】=={-1,1,2}12、【解題分析】由對數(shù)真數(shù)大于零可知在上恒成立,利用分離變量的方法可求得,此時結(jié)合復合函數(shù)單調(diào)性的判斷可知在上單調(diào)遞增,由此可確定的取值范圍.【題目詳解】由題意知:在上恒成立,在上恒成立,在上單調(diào)遞減,,;當時,單調(diào)遞增,又此時在上單調(diào)遞增,在上單調(diào)遞增,滿足題意;實數(shù)的取值范圍為.故答案為:.13、【解題分析】M﹣ABC四個面都為直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,從而可得MC=2,那么ABC內(nèi)接球的半徑r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC時等腰直角三角形,∴外接圓半徑為AC=外接球的球心到平面ABC的距離為=1可得外接球的半徑R=故得:外接球表面積為.由已知,設(shè)內(nèi)切球半徑為,,,內(nèi)切球表面積為,外接球與內(nèi)切球的表面積之和為故答案為:.點睛:本題考查了球與幾何體的問題,一般外接球需要求球心和半徑,首先應(yīng)確定球心的位置,借助于外接球的性質(zhì),球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線,這樣兩條直線的交點,就是其外接球的球心.14、外切【解題分析】先把兩個圓的方程變?yōu)闃藴史匠?,分別得到圓心坐標和半徑,然后利用兩點間的距離公式求出兩個圓心之間的距離與半徑比較大小來判別得到這兩個圓的位置關(guān)系【題目詳解】由x2+y2+6x-4y+9=0得:(x+3)2+(y-2)2=4,圓心O(-3,2),半徑為r=2;由x2+y2-6x+12y-19=0得:(x-3)2+(y+6)2=64,圓心P(3,-6),半徑為R=8則兩個圓心的距離,所以兩圓的位置關(guān)系是:外切即答案為外切【題目點撥】本題考查學生會利用兩點間的距離公式求兩點的距離,會根據(jù)兩個圓心之間的距離與半徑相加相減的大小比較得到圓與圓的位置關(guān)系15、#0.3【解題分析】利用“1”的代換,構(gòu)造齊次式方程,再代入求解.【題目詳解】,故答案為:16、10【解題分析】根據(jù)分層抽樣原理求出抽取的人數(shù)【題目詳解】解:根據(jù)分層抽樣原理知,,所以在大一青年志愿者中應(yīng)選派10人故答案為:10三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),,.【解題分析】先選條件①或條件②,結(jié)合函數(shù)的性質(zhì)及圖像變換,求得函數(shù),(1)由,得到,根據(jù)由正弦函數(shù)圖像,即可求解;(2)根據(jù)函數(shù)正弦函數(shù)的形式,求得,,進而得出函數(shù)的單調(diào)遞增區(qū)間.【題目詳解】方案一:選條件①由函數(shù)的圖象相鄰兩條對稱軸之間的距離為,可得,解得,所以,又由函數(shù)的圖象向右平移個單位長度得到,又函數(shù)圖象關(guān)于對稱,可得,,因為,所以,所以.(1)由,可得,因為函數(shù)在上的值域為,根據(jù)由正弦函數(shù)圖像,可得,解得,所以的取值范圍為.(2)由,,可得,,當時,可得;當時,可得;當時,可得,所以函數(shù)在上的單調(diào)遞增區(qū)間為,,.方案二:選條件②:由,因為函數(shù)的圖象相鄰兩條對稱軸之間的距離為,可得,所以,可得,又由函數(shù)的圖象向右平移個單位長度得到,又函數(shù)圖象關(guān)于對稱,可得,,因為,所以,所以.(1)由,可得,因為函數(shù)在上的值域為,根據(jù)由正弦函數(shù)圖像,可得,解得,所以的取值范圍為.(2)由,,可得,,當時,可得;當時,可得;當時,可得,所以函數(shù)在上的單調(diào)遞增區(qū)間為,,.【題目點撥】解答三角函數(shù)圖象與性質(zhì)的綜合問題的關(guān)鍵是首先將已知條件化為或的形式,然后再根據(jù)三角函數(shù)的基本性質(zhì),結(jié)合數(shù)形結(jié)合法的思想研究函數(shù)的性質(zhì)(如:單調(diào)性、奇偶性、對稱性、周期性與最值等),進而加深理解函數(shù)的極值點、最值點、零點及有界性等概念與性質(zhì).18、(1),;(2).【解題分析】(1)利用誘導公式化簡f(α)即可;(2)-x和互余,所以sin=cos,再結(jié)合已知條件即可求解.【題目詳解】(1);f()=;(2),.19、(1),;(2)2.【解題分析】(1)根據(jù)相似三角形的判定定理和性質(zhì)定理,結(jié)合等腰三角形的性質(zhì)、勾股定理進行求解即可;(2)根據(jù)直角三角形面積公式,結(jié)合基本不等式進行求解即可.【小問1詳解】由點到直線、的距離分別為1、2,得AE=1、AD=2,由,得,則,由題意得,在中,,從而,由和,得∽,則,即,在中,,在中,,由為等腰三角形,得,則且,故,.【小問2詳解】由,,,得在中,,當且僅當即時等號成立,故面積S的最小值為2.20、(1),;(2).【解題分析】(1)分析可知的兩根是、,利用韋達定理可求得實數(shù)、的值;(2)分析可知不等式在上恒成立,可得出,由此可解得實數(shù)的取值范圍.【題目詳解】由已知可知,方程的兩根是、且,所以,解得;(2),可得,,因為在上恒成立,則在上恒成立,所以,,解得.因此,實數(shù)的取值范圍是.21、(1);(2)【解題分析】(1)用二次函數(shù)法求函數(shù)的最小值,要注意定義域,同時由于不確定,要根據(jù)對稱軸分類討論(2)首先用單調(diào)性定義證明單調(diào)性,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論