版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川內江威遠龍會中學2024屆數(shù)學高一上期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的單調遞增區(qū)間是A. B.C. D.2.用樣本估計總體,下列說法正確的是A.樣本的結果就是總體的結果B.樣本容量越大,估計就越精確C.樣本的標準差可以近似地反映總體的平均狀態(tài)D.數(shù)據(jù)的方差越大,說明數(shù)據(jù)越穩(wěn)定3.在正方體中,異面直線與所成的角為()A.30° B.45°C.60° D.90°4.函數(shù)是()A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)5.定義在實數(shù)集上的奇函數(shù)恒滿足,且時,,則()A. B.C.1 D.6.函數(shù)的零點所在的區(qū)間是A.(0,1) B.(1,2)C.(2,3) D.(3,4)7.若cos(πA.-29C.-598.若-<α<0,則點P(tanα,cosα)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知全集,集合,或,則()A. B.或C. D.10.若,,,則的大小關系為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)f(x)=(a>0,a≠1)是偶函數(shù),則a=_________,則f(x)的最大值為________.12.設函數(shù),則____________.13.若,則該函數(shù)定義域為_________14.設函數(shù),若關于x的方程有四個不同的解,,,,,且,則m的取值范圍是_____,的取值范圍是__________15.冪函數(shù)的圖象經(jīng)過點,則_____________.16.已知圓心為,且被直線截得的弦長為,則圓的方程為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù)(1)若,求的值(2)求函數(shù)在R上的最小值;(3)若方程在上有四個不相等的實數(shù)根,求a的取值范圍18.已知正方體ABCD-的棱長為2.(1)求三棱錐的體積;(2)證明:.19.已知,函數(shù).(1)當時,解不等式;(2)若關于的方程的解集中恰有一個元素,求的取值范圍;(3)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.20.已知,求值:(1);(2)2.21.若函數(shù)f(x)滿足f(logax)=·(x-)(其中a>0且a≠1).(1)求函數(shù)f(x)解析式,并判斷其奇偶性和單調性;(2)當x∈(-∞,2)時,f(x)-4的值恒為負數(shù),求a的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】,選D.2、B【解題分析】解:因為用樣本估計總體時,樣本容量越大,估計就越精確,成立選項A顯然不成立,選項C中,樣本的標準差可以近似地反映總體的穩(wěn)定狀態(tài),、數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,故選B3、C【解題分析】首先由可得是異面直線和所成角,再由為正三角形即可求解.【題目詳解】連接因為為正方體,所以,則是異面直線和所成角.又,可得為等邊三角形,則,所以異面直線與所成角為,故選:C【題目點撥】本題考查異面直線所成的角,利用平行構造三角形或平行四邊形是關鍵,考查了空間想象能力和推理能力,屬于中檔題.4、A【解題分析】由題可得,根據(jù)正弦函數(shù)的性質即得.【題目詳解】∵函數(shù),∴函數(shù)為最小正周期為的奇函數(shù).故選:A.5、B【解題分析】根據(jù)函數(shù)奇偶性和等量關系,求出函數(shù)是周期為4的周期函數(shù),利用函數(shù)的周期性進行轉化求解即可【題目詳解】解:奇函數(shù)恒滿足,,即,則,即,即是周期為4的周期函數(shù),所以,故選:B6、B【解題分析】因為函數(shù)為上的增函數(shù),故利用零點存在定理可判斷零點所在的區(qū)間.【題目詳解】因為為上的增函數(shù),為上的增函數(shù),故為上的增函數(shù).又,,由零點存在定理可知在存在零點,故選B.【題目點撥】函數(shù)的零點問題有兩種類型,(1)計算函數(shù)的零點,比如二次函數(shù)的零點等,有時我們可以根據(jù)解析式猜出函數(shù)的零點,再結合單調性得到函數(shù)的零點,比如;(2)估算函數(shù)的零點,如等,我們無法計算此類函數(shù)的零點,只能借助零點存在定理和函數(shù)的單調性估計零點所在的范圍.7、C【解題分析】cos(π2-α)=sin8、B【解題分析】∵-<α<0,∴tanα<0,cosα>0,∴點P(tanα,cosα)位于第二象限,故選B考點:本題考查了三角函數(shù)值的符號點評:熟練掌握三角函數(shù)的定義及三角函數(shù)的值的求法是解決此類問題的關鍵,屬基礎題9、D【解題分析】根據(jù)交集和補集的定義即可得出答案.【題目詳解】解:因為,或,所以,所以.故選:D10、A【解題分析】由指數(shù)函數(shù)的單調性可知,由對數(shù)函數(shù)的單調性可知,化簡,進而比較大小即可【題目詳解】因為在上是增函數(shù),所以;在上是增函數(shù),所以;,所以,故選:A【題目點撥】本題考查指數(shù)、對數(shù)比較大小問題,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調性的應用二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解題分析】根據(jù)偶函數(shù)f(-x)=f(x)即可求a值;分離常數(shù),根據(jù)單調性即可求最大值,或利用基本不等式求最值.【題目詳解】是偶函數(shù),,則,則,即,則,則,則,當且僅當,即,則時取等號,即的最大值為,故答案為:,12、【解題分析】依據(jù)分段函數(shù)定義去求的值即可.【題目詳解】由,可得,則由,可得故答案為:13、【解題分析】由,即可求出結果.【題目詳解】因為,所以,解得,所以該函數(shù)定義域為.故答案為【題目點撥】本題主要考查函數(shù)的定義域,根據(jù)正切函數(shù)的定義域,即可得出結果,屬于基礎題型.14、①.②.【解題分析】畫出的圖象,結合圖象可得的取值范圍及,,再利用函數(shù)的單調性可求目標代數(shù)式的范圍.【題目詳解】的圖象如下圖所示,當時,直線與的圖象有四個不同的交點,即關于x的方程有四個不同的解,,,.結合圖象,不難得即又,得即,且,所以,設,易知道在上單調遞增,所以,即的取值范圍是故答案為:,.思路點睛:知道函數(shù)零點的個數(shù),討論零點滿足的性質時,一般可結合初等函數(shù)的圖象和性質來處理,注意圖象的正確的刻畫.15、【解題分析】先代入點的坐標求出冪函數(shù),再計算即可.【題目詳解】冪函數(shù)的圖象經(jīng)過點,設,,解得故,所以.故答案為:.16、【解題分析】由題意可得弦心距d=,故半徑r=5,故圓C的方程為x2+(y+2)2=25,故答案為x2+(y+2)2=25三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解題分析】(1)利用求得,由此求得.(2)利用換元法,對進行分類討論,結合二次函數(shù)的性質求得正確答案.(3)利用換元法,結合二次函數(shù)零點分布等知識來求得的取值范圍.【小問1詳解】因,所以即此時,由【小問2詳解】令,,則,對稱軸為①,即,②,即,③,即,綜上可知,.【小問3詳解】令,由題意可知,當時,有兩個不等實數(shù)解,所以原題可轉化為在內有兩個不等實數(shù)根所以有18、(1)(2)證明見解析【解題分析】(1)將問題轉化為求即可;(2)根據(jù)線面垂直證明線線垂直.【小問1詳解】在正方體ABCD-中,易知⊥平面ABD,∴.【小問2詳解】證明:在正方體中,易知,∵⊥平面ABD,平面ABD,∴.又∵,、平面,∴BD⊥平面.又平面,∴19、(1).(2).(3)【解題分析】(1)當時,解對數(shù)不等式即可;(2)根據(jù)對數(shù)的運算法則進行化簡,轉化為一元二次方程,討論的取值范圍進行求解即可;(3)根據(jù)條件得到,恒成立,利用換元法進行轉化,結合對勾函數(shù)的單調性進行求解即可.試題解析:(1)由,得,解得(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(a)﹣log2[(a﹣4)x+2a﹣5]=0即log2(a)=log2[(a﹣4)x+2a﹣5],即a=(a﹣4)x+2a﹣5>0,①則(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,當a=4時,方程②的解為x=﹣1,代入①,成立當a=3時,方程②的解為x=﹣1,代入①,成立當a≠4且a≠3時,方程②的解為x=﹣1或x,若x=﹣1是方程①的解,則a=a﹣1>0,即a>1,若x是方程①的解,則a=2a﹣4>0,即a>2,則要使方程①有且僅有一個解,則1<a≤2綜上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,則a的取值范圍是1<a≤2,或a=3或a=4(3)函數(shù)f(x)在區(qū)間[t,t+1]上單調遞減,由題意得f(t)﹣f(t+1)≤1,即log2(a)﹣log2(a)≤1,即a≤2(a),即a設1﹣t=r,則0≤r,,當r=0時,0,當0<r時,,∵y=r在(0,)上遞減,∴r,∴,∴實數(shù)a的取值范圍是a【一題多解】(3)還可采用:當時,,,所以在上單調遞減則函數(shù)在區(qū)間上的最大值與最小值分別為,即,對任意成立因為,所以函數(shù)在區(qū)間上單調遞增,時,有最小值,由,得故的取值范圍為20、(1);(2).【解題分析】(1)根據(jù)已知可求出,將所求的式子化弦為切,即可求解;(2)引進分式,利用“1”的變化,將所求式子化為的齊次分式,化弦為切,即可求解.【題目詳解】.(1);(2)2.【題目點撥】關鍵點睛:解決問題二的關鍵在于利用“1”的變化,將所求式子化為的齊次分式,化弦為切.21、(1)見解析.(2)[2-,1)∪(1,2+]【解題分析】試題分析:(1)利用換元法求函數(shù)解析式,注意換元時元的范圍,再根據(jù)奇偶性定義判斷函數(shù)奇偶性,最后根據(jù)復合函數(shù)單調性性質判斷函數(shù)單調性(2)不等式恒成立問題一般轉化為對應函數(shù)最值問題:即f(x)最大值小于4,根據(jù)函數(shù)單調性確定函數(shù)最大值,自在解不等式可得a的取值范圍試題解析:(1)令logax=t(t∈R),則x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)為奇函數(shù)當a>1時,y=ax為增函數(shù),y=-a-x為增函數(shù),且>0,∴f(x)為增函數(shù)當0<a<1時,y=ax為減函數(shù),y=-a-x為減函數(shù),且<0,∴f(x)為增函數(shù).∴f(x)在R上為增函數(shù)(2)∵f(x)是R上的增函數(shù),∴y=f(x)-4也是R上的增函數(shù)由x<2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西西林縣苗族民歌之分析研究
- 公司紙巾采購合同范本
- 會議合同范本1
- 公司買賣車合同范本
- 農(nóng)村個人購房合同范本
- 2025年度智慧城市照明系統(tǒng)建設項目分包合同模板
- 作品授權合同范本
- 修車廠招工合同范例
- 圓模三角帶行業(yè)深度研究報告
- 勞務合同范本超齡
- 貴州省遵義市數(shù)學小升初試卷及解答參考(2024-2025學年)
- 【課件】2024-2025學年高一上學期英語開學第一課課件
- 專題04 地質地貌-備戰(zhàn)2025年高考地理真題題源解密(新高考用)(解析版)
- 市政道路改造工程施工組織設計
- 三年級奧數(shù)專項練習-和差問題
- (2024年)師德師風學習內容教師師德師風培訓內容通用多篇
- 模板工程風險辨識及防范措施
- 2024版《安全生產(chǎn)法》考試題庫附答案(共130題)
- 教育家精神專題講座課件
- 項目投標BIM方案(投標專用)
- 社區(qū)電動車棚新(擴)建及修建充電車棚施工方案(純方案-)
評論
0/150
提交評論